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Abstract

I study credit market outcomes with different competing lending technologies: A
fintech lender that learns from data and is able to seize on-platform sales, and a bank-
ing sector that relies on physical collateral. Despite flexible information acquisition
technology, the endogenous fintech learning is surprisingly coarse—only sets a sin-
gle threshold to screen out low-quality borrowers. As the fintech lending technology
improves, better enforcement harms, while better information technology benefits tra-
ditional banking sector profits. Big data technology enables the fintech to leverage
data from its early-stage operations in unbanked markets to develop predictive models
for expansion into new markets.
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1 Introduction

Following the Great Recession, the global banking industry has undergone major transforma-
tion due to stricter regulations and increased competition from fintech and bigtech sectors.1

These new players provide distinctive front-end services and have revolutionized credit in-
formation processing through data and machine learning (Berg, Burg, Gombović, and Puri,
2020; Gambacorta, Huang, Li, Qiu, and Chen, 2023; Ghosh, Vallee, and Zeng, 2021).2 In the
U.S., they have grown rapidly (TransUnion report and Berg, Fuster, and Puri, 2021), with
high growth rates for business lending (43.1% annually) and Buy-Now-Pay-Later (BNPL)
loans (over 100% annually). The long-term effects of digital disruption on traditional banks
remain uncertain, particularly as the aggressive entry of bigtechs could potentially render
the traditional banking sector’ legacy technologies and branch networks obsolete.

Fintech lending—which encompass both fintech and bigtech players in this paper—differs
from bank lending in many ways, especially in small business loans (a key area within fintech).
For example, as a payment processor, Square provides revenue-based loans to businesses like
food trucks. These loans are repaid automatically by deducting a percentage from the daily
sales, and are also available at Amazon and PayPal; as quoted from Square’s website:

“A fixed percentage of your daily card sales is automatically deducted until
your loan is fully repaid...Loan eligibility is based on a variety of factors related
to your business, including its payment processing volume, account history, and
payment frequency...applying for a Square loan doesn’t affect your credit score.”

Square’s payment service enables conveniently collecting the incoming sales that flow through,
and at the same time accumulating past activities for information acquisition. On the other
hand, traditional banks do not have alternative data like the truck’s real-time location to
predict future sales. More fundamentally, even with this information, seizing cash flows is
difficult for banks. Although both sales in-processing (in Square’s case) and bank deposits
are liabilities of the lender owed to the merchant borrower, deposits are more under the busi-
ness’s control (Hart and Moore, 1994; Kiyotaki and Moore, 1997) while sales in-processing
are more under Square’s control before being sought after by the bankruptcy estate, if de-
fault occurs. As a result, bank lending heavily relies on physical collateral (see small firms
in Lian and Ma, 2021; Berger and Udell, 1998), such as the truck in this example.

1Fintechs serve customers of solid credit scores (Buchak, Matvos, Piskorski, and Seru, 2018; Tang, 2019;
Di Maggio and Yao, 2021), suggesting competition with banks.

2Closest to this paper involves on-platform activities and transactions data, besides the mentioned studies,
see also Ouyang (2021); Liu, Lu, and Xiong (2022).
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Figure 1: Fintech Lenders Summary

A textual analysis of Pitchbook’s company descriptions identified 867 fintech lenders and further classified
their business models based on Services (A) and Technology (B). See Online Appendix 7.1 for details.
Collateral usage (C) is based on Gopal and Schnabl (2022), and shows a small presence of fintechs—mainly
against merchant cash advances (revenue-based loans).

Data-driven lending is prevalent among fintech lenders. A textual analysis of Pitchbook’s
company descriptions reveals that fintechs often extend their credit based on sales, invoices,
and receivables (Panel A of Figure 1), with a strong focus on information acquisition (Panel
B). Additionally, the secured lending sample in Gopal and Schnabl (2022) reveals that fin-
techs rarely uses physical collateral: Their Table 2, partially reproduced in Panel C, shows
that only 20 fintechs have issued over 1500 secured small business loans during 2006–2016;
moreover, main fintech presence involves revenue-based loans (merchant cash advances).

This paper introduces a novel credit market competition framework, in which a fintech
with a distinct cashflow-based enforcement competes against the traditional collateral-based
lending. Existing studies often adapt canonical credit competition between banks, with the
fintech having a different screening precision (He, Huang, and Zhou, 2023), or apply industrial
organization (IO) frameworks to capture heterogeneous lending services in a reduced-form
way (Chu and Wei, 2021). However, accumulating evidence show that bank and fintech
lending are different and each would serve specific borrowers better, and unresolved issues
remain such as mixed evidence on equilibrium prices upon fintech entry (Fuster, Plosser,
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Schnabl, and Vickery, 2019; Tang, 2019). With an emphasis on different lending technologies,
this paper aims to offer fresh insights.

In my model, a borrower uses her own funds w and finances the investment shortfall
1−w through debt to generate cash flow a, where a is private information. The two types w

and a respectively represent the observable (LTV) and latent credit qualities. Within each
market indexed by the observable type w, two lenders—a bank and a fintech—simultaneously
decide whether to make an offer, and if yes, the corresponding interest rate. Lending is
subject to limited enforcement, meaning that borrowers at most repay what the lender could
enforce. Importantly, when choosing lenders, borrowers thus compare the actual borrowing
cost (considering that she may abscond).

Lenders differ in enforcement technologies, which lead to their different evaluations of
the same borrower. The bank collateralizes the physical asset, which has constant collateral
value (in the baseline). This implies that borrower quality to the bank solely depends on
wealth w; consequently, low-wealth markets become unbanked in the spirit of Holmstrom and
Tirole (1997). In contrast, the fintech can seize a fraction of cash flows thanks to front-end
service like Square, but does not take physical collateral due to its personnel-light business
model. As a result, the fintech values borrowers with high productivity a which substitutes
for w quality (LTV).

Low-productivity borrowers prefer defaulting on the fintech over collateralized bank loan,
thus exposing the fintech to adverse selection. I assume that fintech lending features powerful
information acquisition, as it benefits from recent revolutions of machine learning, big data,
and more. In the model, the fintech can learn about any partition of borrower productivity
at an entropy cost, allowing it to categorize borrowers as desired and offer tailored quotes.
One model extension allows for cross-market information spillover to forecast new markets
with acquired information. Consistent with confidential algorithms, information acquisition
is unobservable to the bank, implying that the fintech does not commit to an information
structure during credit market competition.

My model is best suited for cash flow-based fintech lending to small businesses like Square.
However, the insights apply to a broad range of fintech lending. Fintechs offering unique
services can enforce via exclusion threats, and the borrower’s latent quality is her willingness
to repay for future access. Examples include Alibaba Group’s small merchant platform and
“Buy Now Pay Later” services.3 The model is also relevant to fintech lending tied to specific

3Ant group, the financing arm of the Alibaba group, does not deduct sales for loan repayment but controls
access to the parent company’s merchant platform.
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“scenarios,” where the borrower’s latent type represents the actual use of the funds.
The main result of my model, as shown in Theorem 1, is that information acquisition is

surprisingly “coarse.” In the unique equilibrium, the fintech only acquires a “single-threshold”
structure to screen out borrowers below the threshold, despite having the potential to secretly
acquire more information to offer tailored loans and steal customers (from the bank), and
lenders adopt mixed strategies in interest rate offering. The coarse learning result is driven by
competition and debt contracts. The fintech does not benefit from extra information (beyond
the lending threshold), as we illustrate by showing that it will not adjust equilibrium quotes
even if secretly knowing the borrower’s true productivity. First, any high quotes incurring
borrower default are the same to the fintech, whose payoff only depends on the enforceable
amount rather than the quote. Second, across lower quotes that the customer fully repays,
competition from bank is so fierce that a higher quote to extract the borrower is exactly
offset with a lower chance of winning her as customer, making the fintech indifferent either.
Last, these two regions share a same knife-edge quote, so the fintech is indifferent over the
original equilibrium support and additional information does not affect its optimal strategy.

Fundamentally, the “coarse” learning result arises because the bank does not suffer from
the winner’s curse, a key property that holds generally in my model even if the bank can seize
some cash-flows. Hence, the bank ignores any information about productivity implied by the
quote and only reacts to the fintech’s quote itself. This leads to intense bank competition
faced by the fintech, eliminating the benefit to acquire additional information. Moreover,
as information comes at a cost, the single-threshold partition and resulting credit market
competition represent the only equilibrium outcome.

My model thus explains why unsecured lending is “coarse.” In practice, fintech and
bigtech internal ratings are often in coarse categories; and more broadly, credit card lenders
with ample in-house data still offer the same rates to observably different customers. Tradi-
tional models with a “common value” setting would predict the opposite since information
brings monopoly power (Sharpe, 1990), while my model predicts “coarse” unsecured lending
because the competition from the secured lending option eliminates information rent. As a
testable implication, in response to different degrees of competition environment, unsophis-
ticated interest rates would be offered at loan origination to compete for the customer, while
once the loan is granted, price discrimination may arise via fees.

The credit market equilibrium features lender specialization. Bank credit depends on
observable credit qualities, while fintech lending gives high-productivity borrowers another
chance: those previously unbanked are picked up as the “invisible primes” (Di Maggio,
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Ratnadiwakara, and Carmichael, 2021), and wealthy borrowers with access to bank credit
enjoy lower interest rate due to competition.

My model has unique implications for fintech disruption. Canonical “common value”
competition theories predict negative impacts of fintech entry on traditional lending, as
fintechs with better information technology would eliminate traditional lender’s information
rent. In contrast, fintech in my model competes on a different dimension, delivering more
nuanced implications depending on the specific fintech technologies under question. Better
“enforcement” technology hurts traditional lending by intensifying competition, but better
“information” technology can benefit it—a lower information cost enables the fintech to
better identify high-productivity customers, leading to a less intense competition. In the
long run, both lending services are likely to coexist and compete.

Introducing information spillovers across markets, the last section models the big data
technology that accumulates data for developing algorithms with out-of-market predictabil-
ity. In particular, the early-stage fintech industry faces limited data and high information
costs, and only profits by issuing high-interest, risky loans to unbanked populations. Data
collected from these early-stage operations can be used to develop predictive models that
identify high-quality borrowers in wealthier market, thus facilitating expansion.

Related Literature

The paper contributes to the growing fintech literature and more broadly connects with the
banking IO literature and auction theory. Limited enforcement borrows from incomplete con-
tracts (Hart and Moore, 1994; Hart, 1995): traditional lending relies on physical collateral,4

and the fintech’s service allows for enforcement and information acquisition, as motivated by
empirical evidence.5 Closest to my paper, and related to portable transactions data under
open banking,6 Ghosh, Vallee, and Zeng (2021) demonstrate a synergy between payment
data and fintech credit extension; Gambacorta, Huang, Li, Qiu, and Chen (2023) find that
bigtech credit strongly reacts to changes in firm characteristics instead of house prices, so
its lending relies on data rather than collateral.

The different enforcement setting complements the canonical credit competition (Broecker,
1990; Hauswald and Marquez, 2003) that are applications of the common value auction.7 In

4See Kiyotaki and Moore (1997); Kehoe and Levine (1993); Rampini and Viswanathan (2010).
5Even basic footprints are as effective as credit scores (Berg, Burg, Gombović, and Puri, 2020), let alone

the transactions data (Square) or when customers “live there lives” on its App (Liu, Lu, and Xiong, 2022).
6This burgeoning literature includes He, Huang, and Zhou (2023); Goldstein, Huang, and Yang (2022)

and Babina, Buchak, and Gornall (2022).
7To name a few, Milgrom and Weber (1982); Hausch (1987); Kagel and Levin (1999); Banerjee (2005).
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classic frameworks, lenders are asymmetrically informed about the borrower’s underlying
quality from their own credit assessment. Better information thus brings monopoly power
(Sharpe, 1990), because competitors are concerned about the “winner’s curse”. In other
models, lenders may use collateral to recover loss (Dell’Ariccia and Marquez, 2006). Closest
to this paper is Sengupta (2007) showing that less informed entrants use collateral in credit
competition. These theories remain within the common value auction applications, where a
trade-off exists between utilizing information versus collateral to address adverse selection,
and collateral is costly due to inefficient liquidation.8 In my paper, collateral serves to enforce
and liquidation never occurs; collateral and information-based lending are different services
that suit different customers, with no clear superiority of one over the other.

My model is in a unique setting of auction with flexible information acquisition, whereas
the literature primarily focuses on binary or one-dimensional choice (Persico, 2000; Shi,
2012). The analysis on flexible information acquisition remains challenging; for example,
Kim and Koh (2022) consider independent private value auctions with binary underlying
values. To effectively model big data and machine learning technologies, I adopt a setting
with a continuum of underlying values and the information acquisition technology enables
learning any partitions, akin to the decision tree models. The single-threshold structure,
which does not rely on a (pure) private value setting, arises as an endogenous outcome and
potentially paves the way for the development of more advanced models in the future.

Theories on fintech lending are new,9 and several recent papers point out platforms’
advantage to enforce cash flows: Li and Pegoraro (2022) highlight bigtechs’ advantageous
screening as low type borrowers self select to unsecured bank lending, Bouvard, Casamatta,
and Xiong (2022) jointly model the platform’s decisions on credit as well as access fees, and
Boualam and Yoo (2022) study fintech’s decision on whether to collaborate with banks. In
contrast, I explore how the platform flexibly acquires information and tailors lending.

2 The Model

We present the main model and explain the key differences from the canonical framework.
8This is consistent with the patterns that collateral requirements fall as lender information improves; see

Boot and Thakor (1994); Petersen and Rajan (1994); Berger and Udell (1995).
9Vives and Ye (2021) examine how the diffusion of information technology affects lending competition.

Parlour, Rajan, and Zhu (2022) argue that fintech competition in payments disrupts the natural information
spillover for lending within the traditional bank. On open banking, He, Huang, and Zhou (2023) emphasize
borrower control, while Goldstein, Huang, and Yang (2022) consider the endogenous responses from bank’s
deposit funding (liability side) to bank’s loan making (asset side).
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Figure 2: Model Scheme

2.1 Model Setup

Figure 2 summarizes the model. A bank and a fintech compete by making simultaneous
loan offers. With limited enforcement, a borrower at most repays what the lender could
enforce—collateral value for the bank versus a fraction of sales for the fintech. Additionally,
the fintech flexibly acquires information about sales to customize offers.

2.1.1 Borrowers

At t = 0, each borrower has one project that costs one dollar to install, but she only has
w ∈ [0, 1] and thus needs to finance the shortfall 1 − w.10 We assume that borrowers enjoy
sufficiently large private benefit from their projects, so that they always want to borrow and
produce. At t = 1, the project generates cash flows a ∈ [a, a].

The two-dimensional borrower type (w, a) corresponds to the observable and latent credit
qualities in practice. The amount w is observable and captures the loan-to-value (LTV)
ratio.11 Productivity a is the borrower’s private information at t = 0 (but the fintech can
costly learn), and becomes publicly known at t = 1. Henceforth, we call each w a market,
and the baseline model considers competition within each w.

The distribution of markets w is characterized by cumulative distribution function (CDF)
H (w) and probability distribution function (PDF) h (w). Within market w, CDF G (a |w )
and PDF g (a |w ) summarize the prior distribution of a. Model extension (Section 4) intro-
duces cross-market predictability with implicit independence between w and a.

10This is consistent with the macro-finance literature (Holmstrom and Tirole, 1997; He and Krishnamurthy,
2012) where a financially constrained entrepreneur fully invests her own wealth into the project.

11The model applies to scalable projects if there is no signaling via investment size.
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Limited enforcement As alternative lending mainly serves households and small busi-
nesses, limited enforcement is a key friction. Specifically, a borrower walks away from the
promised repayment whenever she could at t = 1. Let Φj denote the maximum amount that
lender j ∈ {b(ank), f(intech)} could seize. For a loan of 1 − w offered at an interest rate
rj ≥ 0 by this lender, the actual repayment is

min
{(

1 + rj
)

(1 − w) , Φj
}

. (1)

To focus on the enforcement friction, the paper assumes that borrowers have enough re-
sources; with renegotiation, this avoids any inefficient liquidation (for details, see later dis-
cussion in Section 2.1.2).

Therefore, from the borrower’s perspective, the actual borrowing cost is Eq. (1). When
provided with both the bank’s quote rb and the fintech’s quote rf , the borrower selects the
one with the lower actual cost:

min

min
{(

1 + rb
)

(1 − w) , Φb
}

︸ ︷︷ ︸
repayment to bank

, min
{(

1 + rf
)

(1 − w) , Φf
}

︸ ︷︷ ︸
repayment to fintech

 . (2)

As the other side of the same coin, lender j is unwilling to lend more than the enforcement
limit. Limited enforcement constrains the ex ante lending capacities, implying that lenders
engage in price competition under asymmetric capacities from different enforcement.

Lenders hence value the same borrower differently, and this contrasts with the canonical
credit competition models (Broecker, 1990; Hauswald and Marquez, 2003) that are appli-
cations of common value auction. The model also differs from monopolistic competition
with differentiated goods and inelastic substitutability from customer preference, such as the
Hotelling model. Here, the borrower views the two financing options as fungible, and the
“suitability” of financing options work as capacity constraints on the lender side.

Data versus collateral In contrast to traditional lending which relies on physical col-
lateral (“land” in Kiyotaki and Moore, 1997), the new fintech lending features innovative
enforcement and information acquisition. Square loans are automatically repaid by a per-
centage of food sales that flow through the payment processor, and similar loans are available
from PayPal and Amazon.12 Seizing small businesses’ cash flows is difficult for banks, as de-

12These loans are called “PayPal Working Capital” (link) and “Amazon Lending” (link), respectively.
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posits are more under the business’s control while sales in-processing are more under Square’s
control,13 before being sought after by the bankruptcy estate (if default occurs). This “data
versus collateral” lending pattern is documented by Gambacorta, Huang, Li, Qiu, and Chen
(2023) and applies to a wide range of fintech lending. For example, platforms like Alibaba
and “Buy Now Pay Later” services are able to enforce via exclusion, and its effectiveness
depend on the borrower’s unobservable preference for the service. Other fintech lending is
linked to specific “scenarios,” and the borrower’s latent type is her usage of the funds.

2.1.2 Lenders

There are two lenders, a bank and a fintech, both with unlimited funding at unit cost.
Lending is restricted to standard debt contracts. Both lenders simultaneously choose whether
or not to make a loan offer, and the interest rate if the offer is made.

Bank The limited enforcement follows Hart and Moore (1994) and Kiyotaki and Moore
(1997). Borrowers can abscond with cash but not physical capital, and the bank can liquidate
the collateral if the borrower defaults on a promised interest rate of rb (w). Suppose that
the collateral is worth θ to the bank, with θ being a publicly known constant. Then right
before repayment, the borrower can renegotiate the payment down to the bank’s reservation
value of θ, assuming that the borrower has all the bargaining power (due to inalienbility of
human capital). Hence, the maximum repayment that the bank can enforce is

Φb = θ. (3)

We assume a ≥ θ, i.e., a borrower always has enough resource to repay the bank and therefore
inefficient liquidation never occurs.

Without loss of generality, we can focus on renegotiation-proof contracts,

(
1 + rb (w)

)
︸ ︷︷ ︸
unit gross rate

(1 − w) ≤ θ︸︷︷︸
collateral value

, (4)

which are riskless absent uncertainty in collateral value θ. Moreover, the bank lends to the
borrower if and only if the collateral value θ is enough to cover the financing needs 1 − w,
and borrowers with lower w become “unbanked.” Formally, denote by mb (w) the probability

13Payment processors connect bank accounts and networks (VISA, Mastercard, Amex, Discover) and
deduction happens on sales in-processing before they become bank deposits.
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that the bank makes an offer, so mb (w) = 1 when w ≥ 1 − θ and mb (w) = 0 otherwise.
When w ≥ 1 − θ, the bank chooses rb (w) subject to the collateral constraint Eq. (4), or

rb (w) ≤ Rb (w) ≡ θ

1 − w
− 1, (5)

where Rb (w) is the ceiling rate implied by the collateral value. As mixed strategy may arise,
denote by F b

(
rb; w

)
the CDF distribution of the bank’s interest rate offering. The formal

notation for bank participation mb (w) will be omitted for the rest of the paper.

Remark 1. In my model with limited enforcement, from the bank’s perspective the borrower
quality only depends on the collateral value θ and LTV w; in other words, the borrower’s
underlying productivity a has no fundamental value to the bank. This extreme modeling
contrasts with the canonical common-value credit competition theories, in order to highlight
the difference in fintech versus bank lending. However, as shown in Section 3.2, the key
insight does not rely on this extreme setting. My result holds even if the bank can also
enforce on some a, i.e., Φb = θ+γa for small γ > 0. For example, productivity may correlate
with the collateral value, or the bank has some bargaining power to leverage the fact that
more productive borrowers are less willing to lose capital (Besanko and Thakor, 1987).

To highlight the fintech’s information technology, I assume that the bank cannot acquire
information about borrower productivity a.

Fintech The fintech lender represents a diverse range of alternative lenders, including
fintechs, bigtechs, platforms, that share the following business model. The fintech does
not collateralize the physical capital, which is consistent with its lean personnel structure in
practice and the small fintech presence in secured small business lending (Gopal and Schnabl,
2022). Instead, the fintech lender can seize a fraction β ∈ (0, 1] of the borrower’s cash flow
a at t = 1. For example, Square as a payment processor collects repayments by deducting a
fixed percentage (β) from the incoming sales (a) until the loan is paid off.

Hence, the maximum amount that the fintech could enforce is

Φf (a) = βa, (6)

and the actual repayment to a fintech loan of 1 − w at interest rate rf (w) is

min
{(

1 + rf (w)
)

(1 − w) , βa
}

. (7)
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For later analysis, it is convenient to introduce

Rf (a; w) ≡ βa

1 − w
− 1, (8)

af (r; w) ≡ (1 − w) (1 + r)
β

(9)

to denote respectively the maximum fintech quote Rf that a type (w, a) borrower fully
repays, and the lowest type af who fully repays the fintech quote of r.

Payment processors enjoy the advantage to directly seize cash flows.14 For Ant Group
(Alibaba) that enforces via an exclusion threat, Eq. (7) also applies. To see this, suppose
that a merchant borrower is less productive off the Alibaba’s platform and only generates
(1 − β)a; then, Alibaba controlling the platform access has all the bargaining power in the
negotiation and can enforce up to βa from the borrower. Similarly, enforcement is better for
high latent quality borrowers (who care more about maintaining platform access.)

Fintech lending features powerful information technology at t = 0. I focus on information
acquisition that results in partitions, akin to decision tree models in machine learning (see
Bryzgalova, Pelger, and Zhu, 2021). Specifically, the fintech secretly chooses a partition
about borrower productivity a in market w

Pw ≡
{
Ai (w) ⊂ [a, a]

}
at the Shannon entropy cost, which measures the “quantity of information.” A partition
divides the set into disjoint events (Ai ∩ Ai′ = ∅ for Ai ̸= Ai′) and covers the entire set
(⋃Ai∈P Ai = [a, a]). Hence, the fintech lender can privately categorize borrowers’ productivity
in an arbitrary way and learn which category Ai the borrower belongs to. For example, with
{[0.3, 0.4)⋃ [0.6, 1] , [0.4, 0.6)} (for a ∈ [0.3, 1]) the fintech knows whether the borrower’s
productivity lies between 0.4 and 0.6.

Information acquisition allows the fintech to customize lending strategies. For each event
Ai (w) ∈ Pw , the fintech chooses the probability to make an offer, denoted by mf (Ai; w),
and the CDF distribution of its interest rate F f

(
rf |Ai (w) ; w

)
upon offering. Importantly,

the fintech does not commit to an information structure during credit competition, because
information acquisition is unobservable. Hence, in equilibrium, the fintech has no profitable
deviations by secretly adjusting its information acquisition and follow-on lending strategies.

14See Footnote 12 for comparison between sales in-processing and bank deposits. Moreover, Square ob-
serves account activities and uses covenants to reduce a borrower’s potential diversion to other payments.
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Fintech’s entropy learning cost and cross-market predictability Let I (·) represent
the Shannon entropy which measures the “information quantity”, i.e., the distance between
the posterior (after information acquisition) and the prior distribution,

I (Pw)︸ ︷︷ ︸
entropy of info structure

≡ −E [log g (a)]︸ ︷︷ ︸
prior

+E

E log g
(
a
∣∣∣Ai (w)

)
︸ ︷︷ ︸

posterior

 .

The cost of acquiring Pw in market w is

C (Pw, w) ≡ c︸︷︷︸
unit cost

· I (Pw)︸ ︷︷ ︸
entropy of info structure

dw. (10)

where c parameterizes the difficulty to acquire information.
Section 4 introduces cross-market predictability: there, we interpret Pw as an algorithmic

model developed in an existing market w, which could be used to identify the same categorical
traits in another market w′ ̸= w at reduced information cost

C (Pw, w′) = δ · C (Pw, w) = δ · cI (Pw) dw, (11)

with δ ∈ [0, 1]. The baseline case absent cross-market predictability is nested by δ = 1.

2.2 Lender Payoffs

As explained, the borrower picks the lower effective cost as in Eq. (2). Under our assumptions
on Φb and Φf , Eq. (2) can be simplified as

min
{
rb, min

{
rf , Rf (a)

}}
. (12)

Figure 3 summarizes borrower choice and the resulting lender profits within market w. For
illustration, the bank’s quote is fixed at rb and two cases of the fintech’s quote are considered:
rf

1 < rb (green) and rf
2 > rb (red). The upward sloping dashed line Rf (a) ≡ βa

1−w
− 1 given

in Eq. (8) is the maximum fintech rate that will be repaid as a function of productivity a.
In the first case where the fintech’s quote is lower rf

1 < rb, we have rb > rf
1 ≥ min

{
Rf (a), rf

1

}
and all borrowers choose the fintech offer. The fintech profit in the left panel is shown in
green area, while there is no bank profit in the right panel (because nobody goes to the
bank). Regarding actual repayment in fintech profits, borrowers with low productivity, i.e.,
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Figure 3: Borrower Choice and Lender Profits

Profits of the fintech (left) and the bank (right) shown as the shaded areas that integrate the actual repayment
from borrowers who choose the lender. Two cases are considered, rf

1 < rb (green) and rf
2 > rb (red).

Rf (a) < rf
1 , default and repay Rf (a), while others, i.e., Rf (a) ≥ rf

1 repay rf
1 .

In the second case where the bank quote is lower rb < rf
2 , whoever choosing the fintech

must have relatively low productivity with Rf (a) < rb < rf
2 so that the actual cost of

borrowing from fintech—defaulting and paying Rf (a)—is more attractive than paying rb to
the bank. The red areas show the resulting lender profits: the fintech profit (left panel) is
the lower triangle that comes from low productivity borrowers who default, and the bank
profit (right panel) comes from high productivity borrowers who repay rb.

It is worth highlighting that only the fintech suffers from adverse selection, while the
collateralized bank loan is free of this risk. This aligns with a key empirical regularity that
traditional bank loans in SMEs and micro-business sectors are often collateralized to mitigate
business risk (Gopal and Schnabl, 2022). This feature is also different from canonical models
where all lenders are subject to adverse selection under the “common value” setting.

In any market w ≥ 1 − θ, the bank’s profit when quoting rb ≤ Rb (w) is

πb
(
rb; w

)
∝

∑
Ai∈Pw

P (Ai)

1 − mf (Ai)︸ ︷︷ ︸
no fintech offer

+ mf (Ai)︸ ︷︷ ︸
fintech offer

·
∫ a

af (rb)︸ ︷︷ ︸
high a

1Ai

[
1 − F f

(
rb
∣∣∣Ai

)]
︸ ︷︷ ︸

bank quote is lower

dG (a)

 rb. (13)

A scaling term of market demand (1 − w) dH (w) is omitted (so “∝” is used), and the
right-hand-side is the profit rate per unit dollar lent. The bank forms an expectation over
the fintech’s private information (Pw) and mixed strategy: upon each Ai (w), the bank faces
competition with probability mf (Ai) when the fintech makes an offer; in competition, as
illustrated in the right panel of Figure 3, the bank wins the customer when both its quote is
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lower, rb < rf (which occurs with probability 1 − F f
(
rb
)
), and the borrower’s productivity

is relatively high, a > af
(
rb
)

so that she does not prefer defaulting with the fintech. (Recall
af (r; w) ≡ (1−w)(1+r)

β
in Eq. (9) is the lowest type who fully repays r to the fintech.)

For the fintech lender, given that a ∈ Ai, its expected profits when quoting rf is

πf
(
rf
∣∣∣Ai ; w

)
∝

[
1 − F b

(
rf
)]

︸ ︷︷ ︸
fintech quote is lower

E
[
min

{
Rf (a) , rf

}∣∣∣Ai
]

+
∫ rf

0︸︷︷︸
fintech quote is higher


∫ af(rb)

a

1Ai

P (Ai)Rf (a) g (a) da︸ ︷︷ ︸
low a: adverse selection

 dF b
(
rb
)

. (14)

When w < 1 − θ, the fintech is a monopolist, and the profit is

πf
(
rf
∣∣∣Ai ; w

)
∝ E

[
min

{
Rf (a) , rf

}∣∣∣Ai
]

. (15)

Using Eq. (14)-(15), one can derive the fintech’s expected lending profits before knowing
borrower category Ai, and net profits that take into account the information cost.

2.3 Comparison with Literature

It’s worth pausing to discuss how the productivity, and its information, affects the credit mar-
ket competition. In the baseline setting that highlights different lending, information about
productivity a only reveals the fintech’s customer quality through enforceable repayments,
while it is inconsequential on customer quality to the bank who cares about collateral only.
Nevertheless, as will be explained in Section 3.2, the key insight still holds if the bank could
additionally enforce some cash flows and the fintech is more sensitive to adverse selection.

The difference in enforcement technologies separates my paper from the existing credit
market competition models that are built on a common value auction setting (Broecker,
1990; Hauswald and Marquez, 2003; He, Huang, and Zhou, 2023). In those models, lenders
offer the same product and value the credit quality information the same way. Even when
considering differentiated lending and customer preferences (for example, lender location in
Vives and Ye, 2021), credit competition still falls within the framework of common value
auction, with the necessary adjustment to account for inelastic substitutability between
options. In contrast, I highlight that lenders have different preferred borrower types due to
different lending technologies, but financing options are perfectly fungible to borrowers. This
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generates unique predictions in my model: as emphasized in Section 3.3, while typically a
larger gap in information technology hurts the less informed lender, in my model an improved
information technology in fintech lending may instead benefit the bank.

2.4 Parameter Assumptions

To focus on relevant cases with interesting economic implications, I make the following
assumptions throughout the paper.

Assumption 1. The parameters of my model satisfies the following conditions.

1. a is relatively low with Rf (a; w) < 0, so that the fintech suffers from “adverse selection.”

2. E
(
Rf (a) ; 1 − θ

)
> 0, so the fintech enters unbanked markets; in markets where the

bank is present, the medium type is positive NPV to the fintech, Rf
(
amed; 1 − θ

)
≥ 0.

3. Unit learning cost c is relatively small c ≤ c.

We further impose the following assumption to ensure a well-behaved mixed strategy
equilibrium (to avoid “ironing” in Myerson, 1981).

Assumption 2. G (a) is regular, i.e., the virtual valuation a − 1−G(a)
g(a) weakly increases.

The following assumption imposes regularity conditions on the information cost function
and the distribution functions of a and w to ensure the equilibrium is well-behaved.

Assumption 3. We impose two extra regularity conditions.

1. The function G(a)
1−G(a) is log-concave (convex) when a < (>)amed;

2. sgn{∂[(1−w)h(w) min{r,Rf (a)}]
∂w

} = sgn{∂ min{r,Rf (a)}
∂w

}.

3 Information Acquisition and Fintech Disruption

This section analyzes credit market equilibrium within a market, assuming no inter-market
information spillover. Strikingly, despite having flexible and unobservable information acqui-
sition, the fintech lender’s optimal information structure only involves screening out borrow-
ers below a single threshold. Additionally, a better fintech’s information technology could
actually benefit the competitor bank.
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3.1 Equilibrium Definition

As explained, the fintech lender’s strategy profile includes information acquisition strategy
Pf,w and lending strategy

{
mf (Ai) , F f

(
rf |Ai

)}
Ai∈Pf,w

, while the bank offers a quote ac-
cording to the strategy F b(r) in market with w ≥ 1 − θ and exits from all markets with
w < 1 − θ. We define the credit market competitive equilibrium as follows.

Definition 1. (Credit Competition Equilibrium) Consider a market with w ≥ 1 − θ. In a
credit market competitive equilibrium, we have:

1. Given the fintech’s strategy, the bank’s strategy solves following problem:

max
rb(w)≤Rb(w)

πb
(
rb; w

)
, (16)

where πb
(
rb; w

)
is given by Eq. (13);

2. Given the bank’s strategy, the fintech solves the following problem

max
Pf,w

∑
Ai∈Pf,w

P
(
Ai
) [

max
mf (Ai),rf (Ai)

mf
(
Ai
)

πf
(
rf
∣∣∣Ai ; w

)]
− C (P, w) , (17)

where πf
(
rf |Ai ; w

)
is given by Eq. (14) and C (P , w) is given by Eq. (10);

3. A borrower (w, a) with two offers
{
rb, rf

}
picks the lower offer min

{
rb, min

{
rf , Rf (a)

}}
.

Otherwise, a borrower takes the only offer, if any, that she receives.

The equilibrium is in mixed strategies with mf , F f (r), and F b (r), such that any lender
is indifferent across all interest rate quotes on support. Under Assumption 2, the equilibrium
is well-behaved: F j’s are over interval supports [rj, rj] without interior atoms or gaps.

Definition 2. Consider a market with w < 1 − θ. In the equilibrium, the fintech is the
monopolist lender who solves the following problem:

max
Pw

∑
Ai∈Pw

P
(
Ai
) [

max
mf (Ai),rf (Ai)

mf
(
Ai
)

(1 − w)E
[
min

{
Rf (a) , rf

}∣∣∣Ai
]

dH (w)
]

− C (P ; w) .

(18)

The remainder of this section characterizes the equilibrium for any given w, implying that
all equilibrium variables depend on w. For ease of exposition, I will omit this indexation w

from now on (up to Section 4.2).
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3.2 Optimal Learning: Screen Out

Granular information seems attractive to the fintech, who could then undercut the bank for
the right customers at the right price, especially as information acquisition is unobservable.
Surprisingly, the main finding of this paper (Theorem 1) is that the optimal fintech learning
strategy is “coarse,” using a single cutoff to screen out borrowers below that threshold.

Theorem 1. The equilibrium is unique. The fintech’s optimal information acquisition policy
separates two intervals with an endogenous cutoff â:

P∗f,w = {[a, â) , [â, a]} , (19)

so that the fintech rejects borrowers with a < â and makes an offer upon a ≥ â.

1. When w ≥ 1 − θ, the bank always makes offer while the fintech makes offer when
a ≥ â. The offered interest rates

{
rb, rf

}
are randomized over a common support[

r, Rb
]

according to

F b (r) = 1 − r

r
, (20)

F f (r |a ≥ â) = 1 − G (â)
1 − G (max {af (r) , â}) · Rb − r

r
, (21)

where r satisfies F f (r |a ≥ â) = 0. The bank’s (fintech’s) CDF has a point mass (is
open) at the upper bound Rb.

2. When w < 1 − θ, the monopolist fintech offers rf = Rf (a) to borrowers with a ≥ â.

The endogenous screening threshold â adopted by the fintech satisfies

(1 − w) h (w) Rf (â)︸ ︷︷ ︸
MR: profit from marginal type

= c log
[

1 − G (â)
G (â)

]
︸ ︷︷ ︸

MC: marginal information cost

(22)

Proof. See Appendix 6.1.

Intuition for the optimal screening with “single-threshold” structure Competition
between different technologies and debt contract are the core forces behind the simple single-
threshold structure. Consider the more intriguing case of w ≥ 1 − θ with bank competition.
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Additional information about a can benefit the fintech in two ways: customizing pricing
and indirectly revealing the bank’s strategy. The second inference effect is absent under the
“private value” setting (relaxed in Remark 2).

Even more surprisingly, the first customization effect is also absent: in equilibrium, the
fintech gains no advantage from knowing borrower quality a. To see this, given the bank’s
equilibrium strategy, the fintech’s profits when quoting any rf is:15

∫ af (rf )

a︸ ︷︷ ︸
low a

[
1 − F b

(
Rf (a)

)]
︸ ︷︷ ︸

winning prob

· Rf (a)︸ ︷︷ ︸
repayment

dG (a) +
∫ a

a(rf )
dG (a)︸ ︷︷ ︸

high a

·
[
1 − F b

(
rf
)]

︸ ︷︷ ︸
winning prob

· rf︸︷︷︸
repayment

, (23)

which includes two possible scenarios depending on whether the borrower defaults (the first
term) or not (the second term); the green area in Figure 3 with rb > rf displays these two
parts of a.

With Eq. (23), I show that even if the fintech knows the borrower type a exactly, it is
indifferent with any interest rate quote r̃f on the equilibrium support r̃f ∈

[
r, Rb

)
; hence

“information” has no value because the fintech does not change its optimal strategy. To see
this, consider the fintech’s deviation payoff when it knows type a and varies the potential
quote r̃f , which ranges across two regions in analogous to those in Eq. (23) (there we fix rf

but integrate over types). In the first “high rate” region r̃f ≥ Rf (a), the borrower defaults
and repays βa under debt contract (analogous to the first term of Eq. (23)). Then the quote
itself becomes irrelevant, and any quote in this region r̃f ≥ Rf (a) leads to the same profit

[
1 − F b

(
Rf (a)

)]
︸ ︷︷ ︸

winning prob

· Rf (a)︸ ︷︷ ︸
repayment

.

In the second “low rate” region r̃f ≤ Rf (a) (analogous to the second term of Eq. (23)), the
borrower fully repays and the fintech solves the following problem (which is irrelevant of a):

max
r̃f

[
1 − F b

(
r̃f
)]

︸ ︷︷ ︸
winning prob

· r̃f︸︷︷︸
repayment

.

Given the bank’s equilibrium strategy F b (r) = 1 − r
r
, the fintech is indifferent across any

15If Rf (â) < r, there is an extra term
∫ af (r)

â
Rf (a) dG (a) in the fintech’s profits that was omitted for

expositional convenience. The omitted term is the same in nature as the first term in Eq. (23) with
1 − F b

(
Rf (a)

)
≡ 1, so the omission does not affect the analysis here.
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quotes in this region r ≤ r̃f ≤ Rf (a);16 so competition essentially eliminates the potential
advantage of a customized offer. Last, these two regions share the same knife-edge quote
r̃f = Rf (a). Therefore, even with the knowledge of a, the fintech is indifference over the
entire equilibrium support [r, Rb], so it has no incentive to learn additional information
within a > â.

Finally, price discrimination is valuable to the monopolistic fintech for w < 1 − θ, but it
can be achieved via the debt contract without granular information. By charging the highest
rate Rf (a) (but letting all borrowers default), those fintech customers repay βa. In sum,
given the bank’s equilibrium strategy, information beyond â has no benefit for the fintech.

Bank equilibrium strategy and uniqueness of equilibrium Why is the bank’s equi-
librium strategy such that it eliminates the fintech’s incentive to acquire more information?
Different lending technologies is the fundamental force behind Theorem 1. Essentially, the
collateralized bank lending is not subject to the winner’s curse that potentially arises from
the fintech’s private information. The “private value” setting naturally leads to this key
observation, as latent type a has no fundamental value to the bank (though, “no winner’s
curse for bank loans” could endogenously arise even when the bank cares a bit about a, as
shown in Remark 2 and Online Appendix 7.2.) As a result, the bank only reacts to the
fintech’s quote itself, cutting its own rate when the fintech’s quote is high, regardless of any
information implied by this quote. This aggressive competition from the bank removes any
incentive for the fintech to learn beyond â.

For the uniqueness of the equilibrium, first, any equilibrium information structure must
be two intervals. In another potential equilibrium with a finer information structure, bank’s
strategy which only reacts to rates per se would be still in the form of Eq. (20). (This
result will be illustrated shortly in the example of a perfectly informed fintech.) Hence, a
finer information structure cannot be supported because the fintech prefers a less costly two-
interval structure that achieves the same lending profits. Second, with the desirable curvature
properties of information cost (Assumption 3), the first order condition (22) corresponds to
a unique equilibrium screening threshold â.

Remark 2. We clarify that the single-threshold result does not rely on the private value
setting. First, the case that the fintech could enforce a smaller collateral value (relative to
the bank, say ϵθ) is easier, as it is equivalent to a level shift in the productivity a to a + ϵθ of

16It is possible that r > Rf (a), so that the first region r̃f ∈
[
Rf (a) , Rb

]
covers the entire equilibrium

domain of the rates offered by the fintech.
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Figure 4: Fintech Perfectly Observes a

all borrowers. Second, suppose that the bank’s enforcement technology is Φb (a) = θ +γa for
some small γ > 0. The single-threshold information structure still arises in equilibrium. As
the key feature of my model, physical collateral protects the bank from losses when lending
to borrowers with low productivity a, i.e., the bank suffers no winner’s curse from borrowers
(with a < â) rejected by the privately informed fintech. In fact, because the bank extracts
all the surplus from these captured borrowers, I show the resulting upper bound interest rate
is Φb (â) = θ + γâ. This implies that, when competing for borrowers with a ≥ â, bank loans
are endogenously riskless as bank interest rates are always offered below the upper bound
Φb (â). Therefore, the resulting competition equilibrium has the same structure as that in
the private value setting with γ = 0. As shown in Online Appendix 7.2, when γ → 0+,
the equilibrium threshold â is independent of γ; in fact, the equilibrium differs from that in
Theorem 1 only in terms of pricing, due to the bank’s better enforcement and rent extraction.

The case of perfect information This example further illustrates the fintech’s learning
incentives. Imagine that the fintech is endowed with perfect information (or “free” learning).
The left panel of Figure 4 illustrates the fintech’s perfectly customized lending strategy in
equilibrium (Online Appendix 7.3 fully characterizes the equilibrium): the fintech rejects
unprofitable borrowers with βa < 1−w, and uses a pure strategy rf (a) to perfectly customize
rates to remaining borrowers.

With the fintech’s pure strategy, the bank infers the type of the marginal customer from
competition, but all types have the same collateral value. In fact, the bank’s equilibrium
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strategy is

F b (r) = 1 − rb

r
, with rb = G (â) Rb

G (â) + 1 − G (af (rb)) ,

which is exactly the bank strategy in Theorem 1 with c → 0 where the fintech learns about
the cutoff â only. Hence, the bank only reacts to the fintech’s screening cutoff â, which
reflects the size of the bank’s captured borrowers.17

Hence, another equilibrium exists for c = 0, besides the one given in Theorem 1 for c → 0.
Because even perfect information brings no benefit beyond the threshold, the single-threshold
structure becomes the unique equilibrium as long as information is costly.

3.3 Fintech as Providing Different Lending Services

I now discuss key implications of the model, and contrast them with those from canonical
credit competition models.

3.3.1 Why is information acquisition unsecured lending so coarse?

In canonical credit competition models with a “common value” setting, lenders have incentive
to acquire more information in order to gain strategic advantage and information monopoly.
For instance, a higher signal precision (of a binary signal, e.g., Hauswald and Marquez,
2003; He, Huang, and Zhou, 2023) improves lending decision, and finer information helps
the informed lender customize his bid (Milgrom and Weber, 1982; Riordan, 1993; He, Huang,
and Parlatore, 2023). Importantly, competitors are concerned about the winner’s curse, and
respond by bidding less aggressively.

This acute theoretical force poses some empirical regularities in the banking industry as
a puzzle. For instance, fintech and bigtechs tend to use coarse categories in their internal
ratings (e.g., Vallee and Zeng, 2019). Additionally, observations in the unsecured lending
business suggest that sophisticated lenders are using fairly unsophisticated lending strategies.
For example, credit card lenders with access to rich data, such as in-house transaction
histories, offer the same interest rate to customers, even when they have significantly different
observable characteristics.

My theory offers some fresh insight in understanding the “coarseness” of the lending
17As illustrated in the right panel of Figure 4, this leads to a constant rent for the fintech when there is bank

competition, i.e., a ≥ af
(
rb
)
, despite its perfectly customized offers. Borrowers with ain[â = af (0) , af

(
rb
)
)

always choose the fintech offer Rf (a), which is less expensive than the lowest bank quote rb. However, the
fintech can still extract the same surplus βa without customization by issuing risky loans that charge rb.
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practice. Even if information is free, unsecured lending does not customize its offers based
on information, because competition from the secured lending option eliminates information
rent. Furthermore, my model suggests that tailored pricing only arises in less competitive
environments. A testable implication is that unsecured lending should be coarse at the
loan origination stage when competing offers are more common; but once the loan is taken,
the lender gains a monopolistic power, and we should observe sophisticated and customer-
tailored pricing (via fees).

3.3.2 Specialization and competition

Fintech lending provides a new way to deal with limited enforcement and channel funds
to households and small businesses. The credit market outcome features specialization and
nuanced implications from technological improvements.

Landscape of lending Recall that the model features a two-dimensional setting for char-
acterizing the entire landscape of borrowers, where w represents the observable credit quality
and a the latent credit quality. Due to different lending technologies, the bank and the fin-
tech are each better at serving customers with certain characteristics. The traditional bank
grants credit based on observable qualities such as LTV (w ≥ 1 − θ in my model). Thanks
to the front-end service, the fintech’s new enforcement technology suits borrowers with high
latent qualities, who are selected via information acquisition. The next proposition studies
the fintech’s optimal lending standard as a function of w.

Proposition 1. The fintech does not acquire information in mid-ranged w. In addition, the
screening threshold is decreasing in wealth, i.e., ∂â(w)

∂w
< 0.

Proof. See Appendix 6.2.

Figure 5 illustrates the landscape of credit access with shaded areas. As shown, the fintech
only makes an offer to borrowers above the blue solid line â(w), which is downward-sloping
as borrowers with high w (low LTV) are less risky. These high-productivity borrowers are
granted another option by the new lending technology: the previously unbanked become
financially included, and wealthy borrowers already with bank credit access enjoy lower in-
terest rate from competition. My paper thus highlights further specialization in customers
based on the latent quality, while under canonical common-value setting, screening is corre-
lated across lenders to select the high latent qualities that lenders care about equally.
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Figure 5: Screening Threshold and Landscape of Lending

The solid blue line is the equilibrium screening threshold â. Information cost results in the gap between â

and the zero-NPV borrower af (0) (black dot-dashed line), as well as no information acquisition in
mid-ranged w. The shaded areas illustrate access to credit: borrowers in red (blue), i.e., w ≥ 1 − θ (a ≥ â),
have access to bank (fintech) credit; both bank and fintech compete in the north-east corner (purple).

The competition environment for the fintech varies across the markets w ≥ 1−θ that are
already with bank credit. In wealthy markets, where borrower surplus is high, the fintech
can effectively compete for customers who were previously squeezed by the bank. However,
in markets with mid-ranged w, even the bank faces tight margins. Hence, the fintech finds it
challenging to compete due to information costs, so it scales back and exits these markets.18

As shown in Proposition 1 and Figure 5, fintech lending thrives in both unbanked and wealthy
population as a result of financial inclusion and competition for rent.

The model prediction is consistent with empirical findings, when mapping w as observable
and a as latent credit quality. For example, in Di Maggio, Ratnadiwakara, and Carmichael
(2021) the fintech lender (Upstart) generates profits from both unbanked low-FICO cus-
tomers and from high-FICO customers. Additionally, in line with specialization in latent
quality a, the fintech picks up the “invisible primes” from low-FICO borrowers (in my model,
borrowers with a ≥ â and w < 1−θ), while in the high-FICO segment some are only selected
by the bank model rather than the fintech model (in my model, a < â so rejected by the
fintech).

18Section 4.1 characterizes the credit competition equilibrium when the fintech is uninformed. Depending
on primitive values, in some of the mid-ranged markets where the fintech does not acquire information, it
may still be present; nevertheless, it would not make any profit.
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Improvement in lending technologies With the advent of new technologies (e.g., mo-
bile internet, big data, and machine learning), it is often argued that fintechs and bigtechs
might bring disruption to the entire financial industry. This part analyzes the implications
of fintech expansion as its technologies improve. Along this dimension, my model has some
unique implications that contrast with those of canonical credit competition models.

Under the canonical setting (Hauswald and Marquez, 2003; He, Huang, and Zhou, 2023),
the fintech is one of the privately informed lenders, and its new technology is about acquiring
better information more efficiently. Hence, the fintech becomes the strong player and hurts
traditional lending. In contrast, my model highlights that the fintech’s lending technology
involves both “enforcement” and “information acquisition;” the detailed technology matters
for the implication on the incumbent traditional banking. As shown formally by the next
proposition, when the “information acquisition” technology improves, the traditional lending
may actually benefit as a result.

Proposition 2. In markets w ≥ ŵ > 1 − θ where the fintech acquires information,

1. as the enforcement technology improves, the fintech lowers screening threshold â and
bank profits decrease, i.e.,

∂â

∂β
< 0,

∂πb
(
rb; w

)
∂β

< 0;

2. as the information acquisition technology improves, under Assumption 1, the fintech
increases screening threshold â and bank profits increase, i.e.,

∂â

∂c
> 0,

∂πb
(
rb; w

)
∂c

< 0.

Proof. See Appendix 6.3.

When improvement is about enforcement (higher β), more customers become suitable for
fintech lending. In equilibrium, the fintech lowers the screening threshold â and competes
for more borrowers, thus hurting bank profits. Intuitively, different lending services are
essentially about different ways to enforce repayment; a smaller enforcement friction therefore
reduces differentiation and intensifies competition. From this perspective, the impact of
fintech technology improvement on competitor bank is similar as in canonical models.19

19Whether technology improvement benefits the fintech itself is ambiguous, because a stronger fintech may
invite more aggressive competition from the bank.
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Figure 6: Lender Profits and Information Costs

Profits are are adjusted for loan-size for comparison across w. The blue solid line (green dashed line)
illustrates profits when information cost c > 0 (c → 0).

In sharp contrast, improvement in information technology (a smaller c) increases the
competitor bank’s profits. As shown in the right panel of Figure 6, in markets where the
fintech acquires information (w > 0.6), bank profits increase (from blue solid line to green
dashed line) as the information cost c > 0 further reduces to near zero c → 0.

The intuition behind this intriguing result is that costly information acquisition leads to
lax screening relative to the frictionless benchmark. The markets where lenders compete
are those with relatively high w, implying that the population is generally of lower risk for
the fintech (the medium borrower is positive NPV under Assumption 1.) As the lemon
problem is not severe, information costs lead to lax screening which teases out the more
easily identified “extreme lemons,” but still serves some ineligible borrowers. Now, suppose
that the information becomes less expensive to acquire. The fintech is able to identify and
exclude some previously served lemons, so it competes for fewer customers and has a more
focused lending. This actually benefits the traditional bank which views all borrowers as
good quality because of collateral. Lending service differentiation plays a key role in this
mechanism, as the fintech’s better information acquisition technology helps it pick more
suitable (not necessarily better from the traditional bank’s view) customers to serve.

In summary, Proposition 2 highlights that the new fintech lender offers a different lend-
ing service. Better enforcement technology enlarges the set of borrowers who get a “second
chance” and increases competition. Better information technology leads to a more efficient
separation of borrowers into the different lending services, and may even benefit the tradi-
tional banking sector.
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Long term co-existence The competition with the new fintech/bigtech lending sheds
light on how the traditional banking sector will respond over the long run. As the fintech
provides a different lending service, it would not eliminate the rent of traditional lending as
canonical models predict. In fact, both lenders earn positive profits in my model, while under
the canonical setting, the old fashioned lending who is falling behind the new information
technology would make zero profits (Hauswald and Marquez, 2003). In addition, the new
lending often relies on front-end services (platforms, payment or others) for enforcement
and platform data. For traditional banking to also develop the lending technology, it would
need to build certain platform infrastructure altogether, besides investing in information
processing (IT equipment, software, algorithms) as predicted in canonical models (He, Jiang,
Xu, and Yin, 2022). Hence, my paper predicts that the traditional sector has less incentive
to aggressively fight back; if they do, acquiring the fintech entrants seems a more efficient
route. In sum, different lending services could coexist and compete in the long run, each
better at serving certain customers.

4 Information Technology and Fintech Expansion

The information technology is essential for the fintech’s expansion in the lending business.
Starting with Section 4.1, we use a benchmark case of uninformed fintech to show that, in
the absence of affordable information, the fintech can only generate profits in the unbanked
population by issuing risky loans. Earlier discussion in Section 3 shows how fintech lending
prospers via screening out ineligible borrowers, but this resolution requires low learning cost
which only happens gradually with technology advancement and data accumulation.

By enabling cross-market predictability, the big data technology significantly speeds up
the process. The fintech industry’s expansion to wealthy markets can be an endogenous
outcome of the early-stage lending in the unbanked population, where fintech companies
extrapolate their learnings by developing predictative algorithms. My model thus provides
insights into the fintech’s fast expansion in the past decade.

4.1 No Information Benchmark and Implication on Expansion

To demonstrate why information technology is essential for the fintech, I consider the bench-
mark case where the fintech is uninformed due to infinitely high information cost c = ∞.
This benchmark reflects the early stage of the digital lending industry, when data is still not
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Figure 7: Benchmark of No Information Acquisition

The left panel draws rf,be and Rb and the fintech exits when rf,be > Rb. In the middle panel, the dashed
line illustrates fintech participation mf (the probability of making an offer); the solid lines are equilibrium
interest rates, and mixed strategy equilibrium the bounds r and r of randomized rates (black lines) are
provided. The right panel shows the resulting lending profits.

sufficient for effective information processing.
Suppose w ≥ 1 − θ; would the fintech lender enter the market? Define rf,be to be the

fintech’s break-even interest rate (as if it is the only lender) to cover the loan cost:

E
[
min

{
Rf (a) , rf,be

}]
= 0. (24)

Here, Rf (a) ≡ βa
1−w

− 1 is the maximum interest rate payment from borrower (w, a) to the
fintech. Recall that Rb ≡ θ

1−w
− 1 is the highest interest rate that a riskless bank loan

can charge. Therefore, the fintech exits the markets where rf,be > Rb because it could only
attract low-quality borrowers who default and pay back less than Rb.

Proposition 3. Suppose c = ∞. In the unique credit market equilibrium, the fintech makes
zero profits when the bank is present, i.e., πf (w) = 0 if w ≥ 1 − θ. Moreover,

1. when 1 − θ ≤ w ≤ ŵ where ŵ satisfies rf,be (ŵ) = Rb (ŵ), the fintech lender exits;

2. when w > ŵ, the fintech randomly makes an offer.

Proof. See Online Appendix 7.4 for proof and equilibrium characterization.

During the early stages, the fintech without rich platform data only relies on the publicly
available credit quality information (i.e., w in the model). Proposition 3 and the right panel
of Figure 7 show that the fintech can only make profits in the unbanked population.

In markets with banked population but relatively low w, as shown in the left panel of
Figure 7 for 1 − θ ≤ w ≤ ŵ, the fintech’s required default premium rf,be sits above the
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maximum bank rate Rb. Because the competing bank is aggressive due to its own tight
margins, the fintech chooses to exit under such circumstances.

Even when w > ŵ (equivalently rf,be < Rb) so that there is room for fintech entry,
the adverse selection puts it at a disadvantage when competing against the riskless bank
lending. A mixed strategy equilibrium arises. When the bank undercuts its offer to rf,be as
in Bertrand, the fintech makes a loss and exits; but this then prompts the bank to increase
its rate, inviting fintech entry. In equilibrium, as shown in the middle panel of Figure 7, the
fintech randomly makes an offer (mf < 1) and earns zero profits; the common bounds of the
lenders’ randomized quotes, rf,be and Rb, reflect competition as well as the bank’s incentive
to squeeze its captured customers (when the fintech randomly withdraws.)

A comparison with the results in Section 3 (for instance, the left panel of Figure 6
versus the right panel of Figure 7) emphasizes the importance of information acquisition in
establishing fintech lending in wealthy markets. Although an uninformed fintech occasionally
makes loans in these markets, the fintech lender only makes profits here when it actively
acquires information to effectively screen out ineligible borrowers (Section 3). This could
be achieved gradually over time as more data is accumulated via “trial and error” and the
information cost decreases.

However, this resolution is costly and takes time, because the fintech must accumulate
data and establish effective screening independently for each specific market through trial
and error, since information is not transferable across different markets. Expanding into
wealthy markets is particularly challenging, because early-stage profitable fintech businesses
are in the unbanked population. A lot of data accumulated from early stage may not be
useful for expanding into wealthy borrowers, so the fintech has to start from scratch.

The advent of big data technology has significantly reduced information costs by enabling
out-of-sample predictability. The data collected from the fintech’s early-stage operations in
unbanked markets can be used to develop predictive algorithms for identifying potential
customers in wealthy markets, as some latent traits are correlated between even observably
heterogeneous groups. Overall, big data technology has played a key role in the fast expansion
of fintech lending in the past decade.

4.2 Big Data: Out-of-Sample Forecasts via Latent Traits

As explained, prior to the emergence of big data technology, it was challenging to generate
large-scale forecasts based on latent traits. Soft information collection was heavily reliant on
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loan officers to engage with borrowers, leading to high information acquisition costs. Besides
the issue of human capacity, the soft information assessed by humans is not transferable,
which meant that data had to be collected independently for each market. As a result,
expansion to new markets is difficult.

Big data technology significantly enriches the data source and allows for the “hardening”
of information about latent characteristics. In the case of fintech lending, its unique digital
ways of interacting with customers facilitates alternative data accumulation. More relevant
to my study, big data technology allows for out-of-sample forecasting. For instance, if a food
truck business is found to be productive and its location footprints are incorporated into the
algorithm as a predictive factor, then the algorithm can identify food trucks with similar
location footprints and favorably predict their productivity, even when the truck owners
differ in observables such as leverage and credit scores.

My model could capture this crucial feature of out-of-sample predictability, once we set
the latent quality a to be correlated across observably different borrowers indexed by w. In
this extension, acquiring an information structure Pw means that the fintech has established
an algorithmic model in some market w for identifying the categorical traits in Pw. This
algorithm could be used to assess another market w′ ̸= w to classify borrowers into the same
latent trait categories.

Formally, recall that the information cost of establishing an algorithm is c · I (Pw) dw.
When applying an established algorithm to another market w′ ̸= w, i.e., Pw′ = Pw, I assume
that the information cost is reduced to δc · I (Pw) dw with δ ∈ (0, 1). This means that the
fintech pays a cost in collecting the data of new customers, but the algorithm systematically
categorizes customers into Pw, at a much lower cost than in the first market w. If the fintech
decides to acquire new information Pw′ ̸= Pw, then the unit information cost is still c. In
sum, the fintech’s superior cross-market forecasting is captured by the following information
cost, with δ = 1 nests the case studied in Section 3:

C
(
Pw′) =

δcI (Pw) dw, if Pw′ = Pw,

cI
(
Pw′

)
dw, if Pw′ ̸= Pw.

(25)

4.3 Fintech Expansion

The big data technology enables cross-market forecasting and so markets are no longer inde-
pendent. Solving for the credit market equilibrium becomes highly complex, but the path-
independent entropy information acquisition cost allows me to solve the equilibrium via a
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Figure 8: Big Data Technology: Cross-Market Forecasting

static problem (where the forward-looking fintech takes into account its future predictability
on other markets). To be more specific, the fintech jointly chooses an information structure
profile {Pw}w∈[0,w] for all markets to maximize the total net profits, with the cross-market
information spillovers in Eq. (25).

The analysis of this challenging problem will focus on some key properties related to the
paper’s theme on different lending, while leaving the full-blown characterization for future
research. To this end, I first present a proposition stating that the fintech still adopts
single-threshold in each market, which echoes the limited value of information under the
“private value” setting. Then, I provide an example to illustrate how the big data technology
significantly reduces information costs and helps the fintech expand into new markets.

Proposition 4. The equilibrium information structure profile {P∗w} is a decreasing step
function â (w) defined over the markets where the fintech acquires information. Specifically,
there exists a sequence of cutoffs â1 > â2 > · · · > ân for w1 < w2 < · · · < wn, so that

1. in markets wi ≤ w < wi+1, the information structure is a single-threshold partition

Pw = {[a, âi) , [âi, a]} ,

and the fintech rejects borrowers of a < âi;

2. in each threshold market wi ∈ {w1, w2, · · · , wn}, the fintech is indifferent between adopt-
ing âi−1 and âi as the screening threshold.

Proof. See Online Appendix 7.5.
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The result in Proposition 4 could be explained by three points. First, the number of
algorithmic models or information structures used by the fintech is finite for the entire
range of markets, because it typically uses the same algorithm in neighboring markets. In
neighboring markets, acquiring new information only slightly improves screening due to
continuity, while the costs of doing so are much higher than those of applying established
algorithms. Second, echoing the main take-away from Theorem 1, the fintech focuses on
the single-threshold partition structure within each market. This is because customizing
interest rates is useless when competing against traditional secured lending, and the purpose
of information is to screen out risky loans. Last, as w increases, there are fewer lemons, and
the fintech has an incentive to lower the screening standard, resulting in decreasing â (w).
Taken together, the equilibrium information strategy is to only lower â at critical markets
{wi} to improve screening.

Proposition 4 thus simplifies the information acquisition problem to finding both the
algorithms indexed by screening standards {âi} and the critical markets {wi} where it is
optimal to lower the screening threshold (from âi−1 to âi). This simplified problem is illus-
trated in Figure 8: suppose that a relatively high screening standard â (w) is used in market
w; in another market w′ > w with less risky customers, the fintech chooses between applying
the same algorithm â (w), which has a smaller unit information cost δc but maintains a high
screening standard, and lowering the screening standard to â′ (w′) but incurring a higher
information cost c.

Using a numerical example, I illustrate how big data technology enables the fintech to
expand beyond unbanked markets by allowing for cross-market forecasting. The results are
shown in Figure 9, where the blue dash-dotted line represents the case of independently
acquiring information across markets (i.e., δ = 1), while the green solid line represents the
case of allowing for cross-market predictability (i.e., δ < 1). In the latter case, the fintech
is assumed to use the same algorithm for all potential markets for simplicity, which gives a
lower bound of its net profits.

In the case where information must be independently acquired for each market, as dis-
cussed in Section 3, the blue dash-dotted line shows that the fintech chooses not to acquire
information when w ≥ 1−θ (left panel). Consequently, it only makes profits in the unbanked
population (right panel). In contrast, big data technology significantly reduces total infor-
mation cost and enables expansion to wealthy markets. As shown in the green solid line, the
fintech can establish an algorithm from the unbanked markets to identify high productivity
types (a ≥ â). The algorithm is then used to forecast wealthy markets w > 0.65, allowing
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Figure 9: Fintech Expansion

Screening threshold (left) and lender profits (right). Without cross-market predictability (blue
dash-dotted line), the fintech could only make profits in unbanked area. With big data and cross-market
predictability (green solid line), the fintech expands into wealthy markets and makes profits there by applying
the algorithm established from unbanked population.

the fintech to compete for high types only (left panel), so the fintech can generate profits in
both unbanked and wealthy populations (right panel).

Furthermore, with the expansion facilitated by the algorithmic models, the fintech can
position itself as a more specialized and less aggressive competitor to the traditional banking
sector, because fintech lending is influenced by algorithms developed from unbanked markets.
In these markets, a high lending standard is used to pick up the “invisible primes,” and when
leveraging this information for other markets, fintech screening may be tilted towards this
cherry-picking standard. Hence, the fintech competes for fewer customers, which can lead
to higher profits for both lenders, as compared with the case where the fintech acquires
information independently for each market. Di Maggio, Ratnadiwakara, and Carmichael
(2021) provides empirical support for this “invisible prime” strategy of fintech lending, where
the fintech model is still more selective than the traditional bank’s model in markets of high
FICO score borrowers, suggesting out-of-sample predictability.

In practice, with capital layout frictions, the fintech’s entry into different markets occurs
sequentially, first targeting underserved markets where it can establish itself and build a
profitable business model before expanding to more competitive markets. To speak to this
concern, an example in Online Appendix 7.5 considers the expansion of a fintech lender
with the “history” of operating in low-w markets with a high lending standard. I leave the
full-blown analysis of such dynamics for future research.
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5 Conclusion

Fintech lending has disrupted traditional banking with fast, flexible services and innova-
tive screening, especially in weaker banking markets like Asia and Africa. Although its
development has been slower in stronger markets like the U.S. and Europe, the competition
landscape could change with the entry of bigtech companies like Amazon and Apple into
lending. Another disruptive force is the rise of payment companies like Square and Stripe
in response to the U.S.’s historically slow and expensive payment system, and they easily
expand into lending with the abundance of customer data and front-end enforcement.

My research highlights the different lending provided by fintechs. Breakthroughs in
information technologies enable fintechs to mitigate the adverse selection differently from the
traditional lending, and the competition between these different lending exactly eliminates
any rent from information-based customization for the fintech. Contrary to conventional
wisdom, information acquisition would be coarse. In the long run, a coexisting system
would be more likely, with each type of lending better at serving certain borrowers.

Open questions remain about alternative lending. For example, most fintech lenders are
not depository institutions and face funding side limitations, and this restrict their ability
to offer, say credit lines or large-sized loans that are areas where banks have their unique
role (Kashyap, Rajan, and Stein, 2002). Given these funding limitations and the fintechs’
front-end convenience and information technology, it would be interesting to study potential
collaborations between banks and fintechs in a non-competitive setting (Hu and Zryumov,
2022), which is already supported by recent evidence (Jiang, 2019; Beaumont, Tang, and
Vansteenberghe, 2022).
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6 Technical Appendix
6.1 Proof of Theorem 1
Lemma 1. The Shannon entropy of a partition P ≡

{
Ai
}

of a random variable a ∈ A with pdf
g(a) can be computed using the following formula:

I (P) = −
∑

Ai∈P

[
P
(
Ai
)

logP
(
Ai
)]

.
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This is equivalent to the entropy of the categorical distribution that indicates event realizations.

Proof. Applying the definition of entropy as the distance between the prior belief and the posterior
belief to the partition P,

I (P) ≡ −E [log g (a)] + E
[
E log g

(
a
∣∣∣Ai

)]
,

where g(a|Ai) is the conditional probability density function,

g
(
a
∣∣∣Ai

)
≡


g(a)
P(Ai) , if a ∈ Ai,

0, if a /∈ Ai.

Then we can derive the expression for I(P) as follows:

I (P) = −
∫

A
g (a) log g (a) da +

∑
Ai∈P

P
(
Ai
) [∫

1a∈Ai

g (a)
P (Ai) log g (a)

P (Ai)da

]

= −
∑

Ai∈P

∫
1a∈Aig (a) log g (a) da +

∑
Ai∈P

∫
1a∈Aig (a)

[
log g (a) − logP

(
Ai
)]

da

=
∑

Ai∈P

∫
1a∈Aig (a)

[
− logP

(
Ai
)]

da

= −
∑

Ai∈P

[
P
(
Ai
)

logP
(
Ai
)]

.

The expression for I(P) is equivalent to the entropy of the categorical distribution with random
variable X that indicates event realization—X = Ai with probability P(Ai), whose entropy is

I (X) ≡ −E [logP (X)] = −
∑

Ai∈P

[
P
(
Ai
)

logP
(
Ai
)]

.

6.1.1 The case of w < 1 − θ

Lemma 2. If w < 1 − θ, the fintech only acquires information about a single threshold â (if it
acquires information), resulting in P = {[a, â) , [â, a]}, where â satisfies

(1 − w) h (w) Rf (â)︸ ︷︷ ︸
marginal borrower return

= c log
(

G (â)
1 − G (â)

)
︸ ︷︷ ︸

marginal info cost

.

Proof. First, the monopolist fintech only considers two binary actions: either offering interest rate
Rf (a) ≡ βa

1−w − 1 or rejecting the borrower. To see this, conditional on making an offer, quoting
Rf (a) generates the highest profits among any potential quote rf regardless of borrower type a,
because min

{
Rf (a) , Rf (a)

}
≥ Rf (a) ≥ min

{
rf , Rf (a)

}
. However, if the expected profit when

offering Rf (a) is negative, the fintech will reject the borrower.
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Second, the fintech acquires information regarding a single threshold â. Given binary actions,
the fintech only differentiates at most two events, which I call Arej upon which it rejects the
borrower and Aoffer upon which it offers Rf (a). Furthermore, I argue that Arej and Aoffer must
be convex. Suppose not, and then there exist two subsets arej, aoffer of equal measure such that

sup aoffer < inf arej where arej ⊂ Arej , aoffer ⊂ Aoffer, and P
(
arej

)
= P

(
aoffer

)
Then we can construct a new partition{

Ârej ≡ Arej ∪ aoffer \ arej, Âoffer ≡ Aoffer ∪ arej \ aoffer
}

,

and the fintech rejects the borrower upon Ârej and offers Rf (a) upon Âoffer. This new strategy
leads to a higher lending profits as compared with those based on

{
Arej , Aoffer

}
:∫

arej
min

{
Rf (a) , Rf (a)

}
g (a) da︸ ︷︷ ︸

arej∈Âoffer, offer Rf (a)

+
∫

aoffer
0 · g (a) da︸ ︷︷ ︸

aoffer∈Ârej ,reject

>

∫
arej

0 · g (a) da︸ ︷︷ ︸
arej∈Arej ,reject

+
∫

aoffer
min

{
Rf (a) , Rf (a)

}
g (a) da︸ ︷︷ ︸

aoffer∈Aoffer, offer Rf (a)

.

The inequality follows from sup aoffer < inf arej. In addition, both partitions share the same
information cost, because P

(
Ârej

)
= P

(
Arej

)
which is from P

(
arej

)
= P

(
aoffer

)
. This contradicts

with the fintech’s optimal choice. Hence, the partition is characterized by a single threshold â,

P = {[a, â) , [â, a]} ;

the fintech rejects the borrower upon upon a < â, and makes an offer at Rf (a) otherwise.
Third, the optimal cutoff â is chosen to maximize the expected net profits:

E
[
πf
(

rf
(
Ai
)∣∣∣Ai

)]
− cI (P) dw

∝ (1 − w) h (w)
∫ a

â
Rf (a) dG (a) + c [G (â) log G (â) + (1 − G (â)) log (1 − G (â))]

The first-order condition (FOC) with respect to â yields

g (â)
[
− (1 − w) h (w) Rf (â) + c log G (â)

1 − G (â)

]
= 0, (26)

which requires the loss from rejecting the marginal type − (1 − w) h (w) Rf (â) to equal the marginal
cost of information −c log G(â)

1−G(â) . Note that the marginal cost of information at end points

−c log G (â)
1 − G (â)

∣∣∣∣
â→a

= +∞, −c log G (â)
1 − G (â)

∣∣∣∣
â→a

= −∞.
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Then by continuity, there exists at least one solution to the FOC which is a local minimum. When
c is sufficiently small, more solutions arise, and under Assumption 3, one can show that there are
at most three solutions: two local minimum points—â1 near a and â3 near a, and a unique local
maximum point â2 between â1 and â3.

Moreover, the endpoints â = a, a correspond to the case of no information acquisition. So if
the information cost is sufficiently low, the fintech must be better off acquiring information, under
which the unique local maximum â2 is globally optimal.

6.1.2 Preparation Lemmas when w ≥ 1 − θ

Lemma 3. Equilibrium is in mixed strategy.

Proof. Suppose for contradiction that equilibrium is in pure strategies: The bank offers rb ≥ 0, and
then in response to the bank’s pure strategy, the fintech must use a pure strategy of rf = rb − ϵ or
reject the borrower for any event A ∈ P.

If the fintech always rejects the borrower, it must be the case that rb = r in equilibrium.
However, in this case, the fintech has a profitable deviation to enter. Contradiction.

If the fintech offers rf = rb−ϵ upon some events, it must be the case that rb = 0, or otherwise one
lender has a profitable deviation by undercutting its competitor. Given rb = 0, only the negative
NPV borrowers (those with Rf (a) ≡ βa

1−w −1 < 0) would choose the fintech’s offer, resulting in loss
for fintech. Then the fintech would have a profitable deviation to reject borrowers. Contradiction.
This completes the proof that the equilibrium is in mixed strategy.

Lemma 4. For any r on both lenders’ supports, wlog there exist an event Â ∈ P, so that around r

1. bank strategy F b (r) is determined by the fintech’s indifference condition given Â;

2. the competition faced by bank, F f (r) ≡
∑

Ai P (Ai) F f (r| Ai), is determined by the fintech’s
strategy conditional on Â, F f

(
r| Â

)
.

Proof. Note that if for any A′, A′′ ∈ P, the supports of the corresponding fintech’s strategies on
interest rate offering are disjoint, then the lemma holds.

Suppose the supports are not disjoint: There exist events A′ and A′′, and let R′ and R′′ denote
the support of strategies upon events A′ and A′′, respectively, such that R′ ∩ R′′ has positive
measure. In equilibrium, the fintech is indifferent across any quote on support, which include some
r̂ ∈ R′ ∩ R′′ for both A′ and A′′:

πf
(

rf (A′)∣∣∣A′
)

= πf ( r̂| A′) , πf
(

rf (A′′)∣∣∣A′′
)

= πf ( r̂| A′′) .

There are two cases depending on whether the fintech reaches the same profits upon A′ and A′′.
In the first case, the profit is the same,

πf
(

rf (A′)∣∣∣A′
)

= πf ( r̂| A′) = πf ( r̂| A′′) = πf
(

rf (A′′)∣∣∣A′′
)

.

Then either there is a payoff-equivalent equilibrium under which the lemma holds. To construct
this equilibrium, the mass of F f (r| A′′) on R′ ∩ R′′ is moved to F f (r| A′) such that the resulting
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conditional CDFs are legitimate:

F̃ f (r| A′) ≡ min
{

F f (r| A′)+ 1r∈(R′∩R′′) · P (A′′)
P (A′) F f (r| A′′) , 1

}
, (27)

F̃ f (r| A′′) ≡ 1r /∈R′∩R′′ · F f (r| A′′)+ 1r∈(R′∩R′′) ·
[
F f (r| A′′)− F̃ f (r| A′)] , (28)

where “min {·, 1}” in Eq. (27) serves to cap the CDF F̃ f (r| A′) below 1 when adding its mass;
when binding, the “+1r∈(R′∩R′′) ·

[
F f (r| A′′) − F̃ f (r| A′)

]
” in Eq. (28) becomes nonzero. The

adjustment results in a pay-off equivalent equilibrium: the fintech’s strategies are still optimal the
specific event A′ or A′′ is irrelevant; bank strategy also remains optimal because the competition
it faces from the fintech, F f (r) ≡

∑
Ai P (Ai) F f (r| Ai) remains unchanged.

If the resulting F̃ f (r| A′) < 1 (min {·, 1} is slack), then the fintech’s new strategy supports R̃′

upon A′ and R̃′′ are disjoint,

R̃′ ≡ R′ ∪
(
R′ ∩ R′′) , R̃′′ ≡ R′′ \

(
R′ ∩ R′′) ,

under which the lemma holds. If F̃ f (r| A′) = 1, then around any r̂ ∈ R′∩R′′, i) bank strategy F b (r̂)
is determined by the fintech’s indifference condition given Â = A′ or A′′; and ii) the competition
faced by bank, F f (r̂) = P (A′) F̃ f ( r̂| A′) + P (A′′) F̃ f ( r̂| A′′) = P (A′) + P (A′′) F̃ f ( r̂| A′′) is given
by the fintech’s strategy conditional on Â = A′′. This completes the proof in the first case.

In the second case, the fintech has a higher profits upon say A′,

πf
(

rf (A′)∣∣∣A′
)

= πf ( r̂| A′) > πf ( r̂| A′′) = πf
(

rf (A′′)∣∣∣A′′
)

.

Then in equilibrium it must be F f (r| A′) = 1 over r ∈ (R′ ∩ R′′). Otherwise, the fintech has a
profitable deviation by moving the mass of F f (r| A′′) on (R′ ∩ R′′) is moved to F f (r| A′), which is
a contradiction to equilibrium condition. With F f (r| A′) = 1 over r ∈ (R′ ∩ R′′), by the previous
argument, the lemma holds and Â = A′′ satisfy both two conditions required. This completes the
proof.

Lemma 5. The mixed strategy equilibrium is well behaved, in that lenders randomize over the
common support

[
r, Rb

]
without interior mass points or gaps, except that only one lender has a

point mass at Rb.

Proof. One can apply the same argument in the literature (e.g., Varian, 1980), with some necessary
adjustment. In the standard argument, if lender j’s distribution F j has some irregularity, then
its competitor lender j′ must also have some irregularity as a response of maximizing profits from
residual demand, given by maxr∈B(r̂)[1−F j(r)]r. Then at least one of them would have a deviation
incentive. In my model, the profits are

πf
(
rf , Ai

)
∝
∫ a(rf )

︸ ︷︷ ︸
low a

1Ai

[
1 − F b

(
Rf (a)

)]
︸ ︷︷ ︸

winning prob

· Rf (a)︸ ︷︷ ︸
repayment

dG (a) +
∫

a(rf )
1AidG (a)︸ ︷︷ ︸

high a

·
[
1 − F b

(
rf
)]

︸ ︷︷ ︸
winning prob

· rf︸︷︷︸
repayment

,

(29)
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πb
(
rb
)

∝ G
(
af (0)

)
· rb +

∫
a(rb)

dG (a)︸ ︷︷ ︸
high a

·
[
1 − F f

(
rb
)]

︸ ︷︷ ︸
winning prob

· rb︸︷︷︸
repayment

. (30)

First, if the competition is being kept constant around r (due to an irregularity in competitor’s
strategy), a lender could strictly gain through an irregular distribution because its profit is still
strictly monotone in r.20 Second, although the fintech has private information Ai, Lemma 4
associates quotes with a specific event Â that is decisive for lender strategies. As a result, the
canonical arguments would apply.

Now I show the detailed proof. First, there is no interior mass point in F j (·), and one lender
could have a mass point at Rb. Otherwise suppose lender j has a mass point at r̂ < Rb in
equilibrium. Then in this conjectured equilibrium, (r̂, r̂ + ϵ) is not a subset of the other lender j′’s
support. Suppose not; then on any borrowers that lender j′ would charge r̂ + ϵ potentially, it would
strictly prefer charging r̂ − ϵ. It follows that one profitable deviation for lender j is to increase the
quote at mass point to rj ∈ (r̂, r̂ + ϵ). Contradiction. The only exception is when the point mass is
at r̂ = Rb. If both lenders have a point mass, then both have a profitable deviation by undercutting
the competitor.

Second, lenders’ share common upper support rb = rf = Rb, and wlog the same lower support
rf = rb = r. It is wlog to focus on rf ≤ rb. This is because when rf > rb, the fintech’s profit is
a constant

∫ a(rb) 1Ai

[
1 − F b

(
Rf (a)

)]
Rf (a) dG (a) (the first term in Eq. 29) irrelevant of rf . If

rf < rb, in the conjectured equilibrium, the bank with captured borrowers must put all weight of
rb ∈

[
rf , rb

]
at Rb. Then the fintech has a profitable deviation by marginally increasing the interest

rate rf − ϵ to rf + ϵ (on the corresponding borrowers). As for lower supports, if rj < rj′ , lender j

has a profitable deviation by put all weight of rj ∈
(
rj , rj′

)
at rj′ − ϵ.

Third, there is no (interior) gap. Let (r′, r′′) refer to the potential gap. Suppose the bank
has a gap. Then for the borrowers that the fintech charges r′, it is a profitable deviation to
marginally increase the interest rate to r′ + ϵ (as the demand does not change). Suppose the
fintech has gap in (r′, r′′). According to Eq. (30), the bank’s profit when charging rb ∈ [r′, r′′] is
G
(
af (0)

)
rb + G

(
a(rb)

) [
1 − F f (r′′)

]
rb. So the bank cannot be indifferent across [r′, r′′] and has

a profitable deviation. Contradiction.

6.1.3 Proof of Theorem 1

Proof. The case of w < 1 − θ is covered in Lemma 2. When w ≥ 1 − θ, first, I solve for for the
bank strategy from the fintech’s indifference condition.

For any Ai ∈ P upon which the fintech makes an offer with positive probability, i.e., mf
(
Ai
)

> 0,
let Ri ≡ supp

{
rf
(
Ai
)}

denote the support of the fintech’s interest rate offering. Then for any
r ∈ Ri which is not isolated (otherwise that point is with zero Lebesgue measure), there exists a

20Under Assumption 2 (conditions on G (a)), even though a higher rb would lead to more low-
type borrowers choosing the fintech and default, the bank’s revenue conditional on residual demand[
G
(
af (0)

)
+
∫

a(rb) dG (a)
]

rb still increases in rb.
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sequence {rn} ⊂ Ri with rn → r, such that πf
(
rn, Ai

)
= πf

(
r, Ai

)
, where

πf
(
r, Ai

)
= dH (w)

{∫ af (r)

a
1Ai

[
1 − F b

(
Rf (a)

)]
Rf (a) dG (a) +

∫ a

af (r)
1AidG (a) ·

[
1 − F b (r)

]
r

}
.

(31)

Applying Eq. (31) to rn and r, we have

πf
(
rn, Ai

)
− πf

(
r, Ai

)
∝
∫ af (rn)

af (r)
1Ai

[
1 − F b

(
Rf (a)

)]
Rf (a) dG (a)

+
∫ a

af (rn)
1AidG (a) ·

[
1 − F b (rn)

]
rn −

∫ a

af (r)
1AidG (a) ·

[
1 − F b (r)

]
r

=
∫ af (rn)

af (r)
1Ai

[
1 − F b

(
Rf (a)

)]
Rf (a) dG (a) +

∫ af (r)

af (rn)
1AidG (a) ·

[
1 − F b (rn)

]
rn

+
∫ a

af (r)
1AidG (a) ·

[
1 − F b (rn)

]
rn −

∫ a

af (r)
1AidG (a) ·

[
1 − F b (r)

]
r

=
∫ af (rn)

af (r)
1Ai

{[
1 − F b

(
Rf (a)

)]
Rf (a) −

[
1 − F b (rn)

]
rn

}
dG (a)

+
∫ a

af (r)
1Ai ·

{[
1 − F b (rn)

]
rn −

[
1 − F b (r)

]
r
}

dG (a) .

As rn → r, we have af (rn) → af (r) by continuity and F b (rn) → F b (r) from Lemma 5. Then
the first term in the above equation is of lower order than the second term (and hence) could be
neglected. Applying the fintech’s indifference condition πf

(
rn, Ai

)
= πf

(
r, Ai

)
, we have∫ a

af (r)
1Ai ·

{[
1 − F b (rn)

]
rn −

[
1 − F b (r)

]
r
}

dG (a) = 0,

which leads to [
1 − F b (rn)

]
rn =

[
1 − F b (r)

]
r.

The equality holds for any r ∈ Ri and any sequence {rn} ⊂ Ri with rn → r. Therefore, for some
constant Ki indexing Ai, the bank’s equilibrium strategy over Ri ≡ supp

{
rf
(
Ai
)}

satisfies
[
1 − F b (r)

]
r = Ki. (32)

In addition, Eq. (32) holds over the entire common support
[
r, Rb

]
. According to Lemma 4,

for any bank quote r ∈
[
r, Rb

]
, we can find an event Â ∈ P such that F b (r) is determined by

the fintech’s indifference condition over Â and thus satisfies Eq. (32) with some K̂ for Â. Then
the continuity of F b (r) over

[
r, Rb

]
as shown in Lemma 5 leads to Ki = K for any Ai, so the

equilibrium bank strategy satisfies[
1 − F b (r)

]
r = K, where r ∈

[
r, Rb

]
. (33)
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Second, conditional on making an offer, the fintech is indifferent across any rate in common
support

[
r, Rb

]
, regardless of event Ai ∈ P. If a borrower defaults and repays Rf (a) ≡ βa

1−w − 1,

as long as Rf (a) ∈
[
r, Rb

]
, Eq. (33) still applies, so that

[
1 − F b

(
Rf (a)

)]
Rf (a) = K; for lower

types with Rf (a) < r or equivalently a < af (r), we have 1 − F b
(
Rf (a)

)
= 0. Hence, for any

event Ai ∈ P with mf
(
Ai
)

> 0, the fintech profit when quoting any r ∈
[
r, Rb

]
is

πf
(
r, Ai

)
∝
∫ af (r)

a
1Ai

[
1 − F b

(
Rf (a)

)]
· Rf (a) dG (a) +

∫ a

af (r)
1AidG (a) ·

[
1 − F b (r)

]
r︸ ︷︷ ︸

=K

=
∫ af (r)

a
1Ai

[
1 − F b

(
Rf (a)

)]
︸ ︷︷ ︸

=1

·Rf (a) dG (a) +
∫ af (r)

af (r)
1Ai

[
1 − F b

(
Rf (a)

)]
· Rf (a)︸ ︷︷ ︸

=K

dG (a)

+ K

∫ a

af (r)
1AidG (a)

=
∫ af (r)

a
1Ai · Rf (a) dG (a) + K

∫ a

af (r)
1AidG (a) ,

which is independent of the quote r.
Third, the equilibrium information structure is a single-threshold partition. The previous argu-

ment shows that the fintech only considers whether to make an offer. Note that there is no benefit
in differentiating between the events upon which to reject the borrower (A′ with mf (A′) = 0)
versus to randomly make an offer (A′′ with mf (A′′) = 0, indifferent whether to reject), because
both lead to zero profits while the differentiation incurs information cost. Hence, equilibrium P
and Aoffer, and the fintech makes an offer with randomized interest rate iff Aoffer occurs.

Further, each event is convex, resulting in a single-threshold partition. Suppose not, and thus
there exist two subsets arej, aoffer of equal measure such that

sup aoffer < inf arej where arej ⊂ Arej , aoffer ⊂ Aoffer, and P
(
arej

)
= P

(
aoffer

)
.

Then the fintech has a profitable deviation to the following partition

P̂ ≡
{

Ârej ≡ Arej ∪ aoffer \ arej, Âoffer ≡ Aoffer ∪ arej \ aoffer
}

.

To see this, when making lending decisions according to P̂, the lending profits are higher∫ af (r)

a
1arej · Rf (a) dG (a) + K

∫ a

af (r)
1arej dG (a)︸ ︷︷ ︸

arej∈Âoffer, offer r∈[r,Rb)

+
∫

aoffer
0 · g (a) da︸ ︷︷ ︸

aoffer∈Ârej ,reject

>

∫
arej

0 · g (a) da︸ ︷︷ ︸
arej∈Arej ,reject

+
∫ af (r)

a
1aoffer

2
· Rf (a) dG (a) + K

∫ a

af (r)
1aoffer

2
dG (a)︸ ︷︷ ︸

aoffer∈Aoffer, offer r∈[r,Rb)

,
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because sup a2 < inf a1. Using Lemma 1, we show that the information cost stays the same due to
and P

(
arej

)
= P

(
aoffer

)
. The profitable deviation leads to contradiction. Therefore,

P = P (â) ≡ {[a, â) , [â, a]} , (34)

where â serves as the screening threshold.
Last, I characterize the mixed strategy equilibrium. The fintech chooses â to maximize its net

profits, facing bank competition that satisfies Eq. (33). Its boundary condition at r = r gives

K = r.

Hence, the choice of â solves

max
â

E
[
πf
(
r
(
Ai
) ∣∣∣Ai

))]
− cI (P (â)) dw,

where lending profits are given by

P
(
Ai
)

πf
(

r
(
Ai
)∣∣∣Ai

)
=

0, Ai = [a, â) ,

(1 − w) dH (w)
[∫ a

â min
{

r, Rf (a)
}

dG (a)
]

, Ai = [â, a] .

and the entropy of a single-threshold partition is

I (P (â)) = − [G (â) log G (â) + (1 − G (â)) log (1 − G (â))] .

We take the first-order condition (FOC) with respect to â:

(1 − w) h (w) g (â)
{

1â≥af (r) · (−r) + 1â<af (r) ·
[
−Rf (â)

]}
+ cg (â) log G (â)

1 − G (â) = 0,

where af (r) ≡ (1−w)(1+r)
β is the lowest type who does not default on quote r. If â ≥ af (r), the

marginal type â does not default on the lower-bound interest rate r. In this case, we solve for r
from the bank’s indifference condition between r and Rb:

r = G (â) Rb, if â ≥ af (r),

where the LHS corresponds to quoting rb = r and getting all customers, and the RHS is about
quoting rb = Rb and getting only those rejected by the fintech. The FOC is equivalent to

− (1 − w) h (w) min
{

G (â) Rb, Rf (â)
}

︸ ︷︷ ︸
MR

= −c log G (â)
1 − G (â)︸ ︷︷ ︸
MC

. (35)

For the local sufficiency condition, I argue that under Assumption 1 there exists at most one
local maximum point â∗ with â∗ < af (0) < amed, where af (0) ≡ 1−w

β is the zero-NPV type to
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fintech and amed is the medium type. Denote by

Q (a) ≜ − (1 − w) h (w) min
{

G (a) Rb, Rf (a)
}

+ c log G (a)
1 − G (a) ;

then the FOC and SOC could be expressed as Q (â) = 0 and Q′ (â) < 0 respectively. Under As-
sumption 1, we have Rf

(
amed

)
> 0. I separate three regions

[
a, af (0)

)
,
[
af (0) , amed

)
,
[
amed, a

]
,

and the following figure illustrates the discussion with decomposed Q (a) ≡ MR (a) − MC (a).

1. In the first region
[
a, af (0)

)
, we have Rf (a) < 0 ≤ G (â) Rb. Hence,

Q (a) = − (1 − w) h (w) Rf (a) + c log G (a)
1 − G (a) ,

Q′ (a) = −h (w) β + cg (a)
G (a) (1 − G (a)) .

Under Assumption 3, Q′′ (a) =
d2
(

c log G(a)
1−G(a)

)
da2 < 0 and so Q (a) is single-peaked, starting from

strictly increasing at a (Q′ (a) = ∞). In addition, Q (a) is negative at both endpoints,

Q (a) = −∞, Q
(
af (0)

)
= c log

G
(
af (0)

)
1 − G (af (0)) < c log

G
(
amed

)
1 − G (amed) = 0.

Taken together, in this region, either Q (a) < 0, or there are two solutions â = â1, â2 to
Q (â) = 0 with Q (a) > 0 when â1 < a < â2. The second scenario arises only when the unit
information cost c is sufficiently small. In this scenario, â1 is a local minimum point with
Q′ (â1) > 0 and â2 is a local maximum point with Q′ (â2) < 0.

2. In the second region
[
af (0) , amed

)
, we have Rf (a) ≥ 0 and log G(a)

1−G(a) < 0, so

Q (a) = − (1 − w) h (w) min

G (a) Rb︸ ︷︷ ︸
+

, Rf (a)︸ ︷︷ ︸
+

+ c log G (a)
1 − G (a)︸ ︷︷ ︸

−

< 0.
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3. In the third region
[
amed, a

]
, I show that any solution to Q (â) = 0 must be a local minimum

with Q′ (â) > 0. Denote by

Q1 (a) ≜ − (1 − w) h (w) Rf (a) + c log G (a)
1 − G (a) ,

Q2 (a) ≜ − (1 − w) h (w) G (a) Rb + c log G (a)
1 − G (a) ,

and then the solutions to Q (â) = 0 must be a subset of solutions to Q1 (â) = 0 or Q2 (â) = 0.
Notice that each Qi for i = {1, 2} has opposite signs at endpoints amed, a with

Qi

(
amed

)
< 0, Qi (a) = ∞.

By continuity, both Qi (â) = 0 have solutions, with the smallest one âi ≡ inf
{

a ≥ amed |Qi (a) = 0
}

satisfying Q′
i (âi) > 0 due to Qi

(
amed

)
< 0. Moreover, I argue that for any a ≥ âi we have

Q′
i (a) > 0, so there is no local maximum point in [âi, a], either. To see this, for Q1 (a), we have

Q′′
1 (a) =

d2
(

c log G(a)
1−G(a)

)
da2 > 0 (inequality comes from Assumption 3), so Q′

1 (a) ≥ Q′
1 (â1) > 0

for a ≥ â1. As for Q2 (a), we have

Q′
2 (a) = g (a)

{
− (1 − w) h (w) Rb + c

G (a) (1 − G (a))

}
,

where the term inside the curly brackets strictly increases in a. For any a ≥ â2, we have
Q′

2(a)
g(a) ≥ Q′

1(â2)
g(â2) > 0 so that Q′

2 (a) > 0.

In sum, there is at most one local maximum point â∗ < af (0) that arises under small information
cost. As the endpoints (â = a, a) correspond to not acquiring information, when c is sufficiently
small, the local maximum â∗ exists and is globally optimum. Therefore, the equilibrium is unique.

To complete the equilibrium characterization, I derive the fintech’s CDF F f (r) upon a ≥ â

through the bank’s indifference condition. The bank’s lending profits when quoting r ∈
[
r, Rb

]
is

πb (r) = (1 − w) dH (w) ·

 G (â)︸ ︷︷ ︸
fintech rejected

+
[
1 − max

{
G (â) , G

(
af (r)

)}]
︸ ︷︷ ︸

borrowers who compare quotes

[
1 − F f (r)

]
︸ ︷︷ ︸

rb<rf

 r, (36)

which equals a constant πb
(
Rb
)

= (1 − w) dH (w) G (â) Rb. Hence, the fintech’s strategy is

F f (r) = 1 − G (â)
1 − max {G (â) , G (af (r))}

Rb − r

r
, (37)

and its boundary condition F f (r) = 0 gives

r = G (â) Rb

G (â) + 1 − G (af (r)) ,
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where we used the result that â < af (0) < af (r).

6.2 Proof of Proposition 1
Lemma 6. When w ≥ 1−θ, equilibrium screening threshold â < amed (medium type), or G (â) < 1

2 ,
and Rf (â) < 0.

Proof. See the local sufficiency discussion of â in Section 6.1.3.

Proof of Proposition 1
Proof. I first construct the net profits Ỹ (â, w) assuming information acquisition (interior â)

Ỹ (â, w) ≜ max
â∈(a,a)

[
πf (â; w) − cI (â) dw

]

∝


(1 − w) h (w) ·

∫ a
â Rf (a) dG (a) − cI (â) , w < 1 − θ,

(1 − w) h (w) ·
{∫ af (r)

â Rf (a) dG (a) +
[
1 − G

(
af (r)

)]
r

}
− cI (â) , w ≥ 1 − θ.

The gain from information is the gap between Ỹ (â) and an uninformed fintech’s profits,

∆Ỹ (â, w) ∝


− (1 − w) h (w) ·

∫ â Rf (a) dG (a) − cI (â) , w < 1 − θ,

(1 − w) h (w) ·
{∫ af (r)

â Rf (a) dG (a) +
[
1 − G

(
af (r)

)]
r

}
− cI (â) , w ≥ 1 − θ,

where uninformed fintech makes zero profits when the bank is present w ≥ 1 − θ.
Using the envelope theorem, when w < 1−θ, the fintech has less incentive to acquire information

when borrowers become wealthier,

∂∆Ỹ (â, w)
∂w

= −
∫ â ∂

[
(1 − w) h (w) Rf (a)

]
∂w︸ ︷︷ ︸
>0

dG (a) < 0.

When w = 1 − θ, we have Rb = 0, so r ≤ Rb = 0 and ∆Ỹ (â, w) < 0 and the fintech does
not acquire information. By continuity, this applies to a region of mid-ranged markets [1 − θ, ŵ).
When w is sufficiently high, the fintech acquires information; otherwise a profitable deviation is
identifying borrowers with a ≥ â = a − ϵ (at negligible information cost) and undercut the bank at
rf = r. By continuity, this applies to a region of wealthy borrowers.

More formally, applying the envelope theorem when w ≥ 1 − θ,

∂∆Ỹ (â)
∂w

=
[
1 − G

(
af (r)

)] ∂ [(1 − w) h (w) r (w)]
∂w

∝ ∂r (w)
∂w

,

where r satisfy the bank’s indifference condition (regardless of whether the fintech acquires infor-
mation in equilibrium),

M ≜ r
[
G (â (w)) + 1 − G

(
af (r, w)

)]
− Rb (w) G (â (w)) = 0. (38)
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We know that
∂af (r, w)

∂w
< 0,

∂Rb (w)
∂w

> 0,

and from FOC and the implicit function theorem,

∂â

∂w
= −

∂Q
∂w
∂Q
∂â

=
∂[(1−w)h(w)Rf (a)]

∂w
∂Q
∂â

< 0,

where Q (â) ≜ − (1 − w) h (w) Rf (a) − c log G(â)
1−G(â) = 0 corresponds to the FOC and ∂Q(â)

∂â < 0
corresponds to the SOC. Then applying the implicit function theorem to Eq. (38), we have

∂r

∂w
= −

∂M
∂w
∂M
∂r

= −

−
(
Rb − r

)
g (â) ∂â

∂w︸︷︷︸
<0

−rg
(
af (r)

) ∂af (r, w)
∂w︸ ︷︷ ︸
<0

− ∂Rb

∂w︸ ︷︷ ︸
>0

G (â (w))

G (â) + 1 − G (af (r)) − rg (af (r)) ∂af

∂r

.

When w → (1 − θ)+, we have r → 0, Rb → 0, and ∂∆Ỹ (â)
∂w ∝ ∂r

∂w > 0; when w is sufficiently high
such that G (â) → 0+, we have ∂∆Ỹ (â)

∂w ∝ ∂r
∂w < 0.

Therefore, the fintech does not acquire information in mid-ranged markets, and competition
becomes fiercer in wealthy markets ( ∂r

∂w < 0).

6.3 Proof of Proposition 2
Proof. I study the comparatives of â, r, F j (r) in response to β and c. We have the FOC

Q (â, β, c) ≜ − (1 − w) h (w) Rf (â) + c log G (â)
1 − G (â) = 0.

From the Implicit Function Theorem, we have

∂â

∂β
= −

∂Q
∂β
∂Q
∂â

= â
∂Q

∂â︸︷︷︸
SOC<0

< 0,

which says an improvement in enforcement lowers the screening threshold as it reduces the cost of
serving lemons; and

∂â

∂c
= −

∂Q
∂c
∂Q
∂â

= −

<0 as â<amed︷ ︸︸ ︷
log G (â)

1 − G (â)
∂Q

∂â︸︷︷︸
SOC<0

< 0,

48



which says an improvement in information technology tightens the screening threshold and squeezes
out more lemons.

Using Lemma 6, we have Rf (â) < r, where the equilibrium r is determined by the bank’s
indifference condition πb (r) = πb

(
Rb
)
, or M (r, β, c) ≜ r

[
G (â) + 1 − G

(
af (r, β)

)]
−RbG (â) = 0.

From the implicit function theorem, we have

∂r

∂β
= −

∂M
∂β
∂M
∂r

= −

−
(
Rb − r

)
g (â) ∂â

∂β︸︷︷︸
<0

−rg
(
af (r, β)

) ∂af

∂β︸︷︷︸
<0

G (â) + 1 − G (af (r, β)) − rg (af (r, β)) ∂af

∂r︸︷︷︸
>0

,

∂r

∂c
= −

∂M
∂c

∂M
∂r

= −

−
(
Rb − r

)
g (â) ∂â

∂c︸︷︷︸
<0

G (â) + 1 − G (af (r, β)) − rg (af (r, β)) ∂af

∂r︸︷︷︸
>0

.

In other words, ∂r
∂β and ∂r

∂c have the opposite sign of the denominator ∂M
∂r = ∂πb(r)

∂r . As β or c increase,
the fintech competes for more borrowers, and the fiercer competition leads the equilibrium r to go
the opposite of the bank’s preferred direction.

The change in the lender’s mixed strategy CDFs F b, F f could be derived from the change in the
boundary conditions. From F b (r) = 1− r

r , a higher (lower) equilibrium r make the bank’s strategy
less aggressive in the sense of first order stochastic dominance; i.e., for r′ > r, F b (r; r′) ≻F OSD

F b (r; r). From F f (r) = 1 − Rb−r
1−G(af (r)) · G (â), we know that the fintech bids more aggressively in

the sense of FOSD when β and c increase (â decreases).
Last, I examine how the lenders’ profits change. The bank’s equilibrium lending profit is

πb = (1 − w) dH (w) · G (â) Rb ∝ G (â) .

Hence, we have
∂πb

∂β
≤ 0,

∂πb

∂c
< 0.

The effects on the fintech’s profits are less clear: it benefits from better lending technology but
may thus face fiercer competition. To see this, let Y f (â) denote the fintech’s net profits (net of
information cost),

Y f (â) ≡πf − cI (P (â))

= (1 − w) dH (w) ·
∫ a

â
min

{
Rf (a) , r

}
dG (a) − cI (P (â))

= (1 − w) dH (w) ·
{∫ af (r)

â
Rf (a) dG (a) +

[
1 − G

(
af (r)

)]
r

}
− cI (P (â)) .

49



By the envelope theorem, we have

∂Y f

∂β
∝
[∫ af (r)

â

a

1 − w
dG (a) +

(
1 − G

(
af (r)

)) ∂r

∂β

]
,

∂Y f

∂c
= (1 − w) dH (w) ·

[
1 − G

(
af (r)

)] ∂r

∂c
− I (P (â)) .

Hence, whether the fintech benefits from improvement in technology depends on the resulting
competition. For example, from the proof of Proposition 1 we know that ∂M

∂r > 0 for sufficiently
high w, so r decreases as β or c increases. In this case, we have ∂Y f

∂c < 0, i.e., the fintech benefits
from an improvement in information acquisition.
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7 Online Appendix
7.1 Appendix: Textual Analysis of Fintechs
This section explains the textual analysis used to create Figure 1, which is based on company
descriptions from Pitchbook.

To identify fintech lenders, I begins with selecting companies whose vertical variable include
“fintech” by as assigned by Pitchbook. Although Pitchbook provides further classification in “key-
words” variables such as payment, crypto, banking-as-a-service, and others, the classification is
relatively arbitrary. Instead, I identify a company as fintech lender if its company description in-
cludes keywords such as “lending platform,” “financing solutions,” “overdraft,” and others. This
results in a sample of 867 fintech lenders for Figure 1.

Next, more specific keywords are employed to categorize fintech lenders based on lending services
(Panel A) and technology (Panel B). Although classifications are not exclusive, overlaps between
categories are rare. The count of lenders in the figure might be underestimated due to the brevity
of company descriptions.

For instance, for service classification, lenders providing working capital loans are identified
using keywords like “sales,” “receivables,” “invoices,” “working capital;” Personal loan providers
are identified using keywords like “buy now pay later.” For technology classification, Fintech lenders
offering digitalized services are identified using keywords like “online,” “web-based,” while those
using algorithmic models are identified using keywords like “machine learning,” “algorithmic,”
“artificial intelligent.” Due to the theoretical nature of the paper, the full list of keywords used for
the textual analysis is not provided in the Appendix.

7.2 Bank Enforcement on Cash Flows
In this part, we show that the main result of the fintech’s single-threshold information acquisition
does not rely on the private value setting. Specifically, we enable the bank to enforce on a fraction
γ > 0 in addition to the physical collateral, i.e.,

Φb (a) = θ + γa,

so that the bank also cares about the underlying productivity of the borrower. We show that credit
market equilibrium is similar to that characterized in Theorem 1 with adjustment on lenders’
interest rate distributions.

Now that whether a borrower defaults on a bank’s loan depends on a as well as w, it is convenient
to introduce ab (r; w) and Rb (a; w) respectively as the marginal productivity type who fully repays
bank’s quote r and the maximum rate that the bank is able to enforce on type a,

ab (r; w) ≡ (1 + r) (1 − w) − θ

γ
, (39)

Rb (a; w) ≡ θ + γa

1 − w
− 1. (40)

Recall that we have defined the counterparts for the fintech lender, af (r; w) and Rf (a; w) in the
main text.
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Lemma 7. Suppose that a borrower receives two offers rb, rf . Define

ǎ ≡
{

θ
β−γ , if β > γ,

∞, if β ≤ γ.

i) For borrowers with a ≤ ǎ, she chooses the bank’s offer iff both rb ≤ rf and a ≥ af
(
rb; w

)
;

ii) For borrowers with a > ǎ, she chooses the fintech’s offer iff both rf ≤ rb and a ≥ ab
(
rf ; w

)
.

Proof. Note that Rb (a) > Rf (a) when a < ǎ and Rb (a) < Rf (a) when a > ǎ.
i) Case a ≤ ǎ: in this case Rb (a) ≥ Rf (a) and we show that borrower choice is similar as that

in the baseline private value setting, i.e., the fintech is subject to adverse selection when competing
against the bank.

If rb ≤ rf , there are two subcases depending on whether Rf (a) ≤ rb. For borrowers with
Rf (a) ≤ rb, they default on the fintech’s offer as rf ≥ rb ≥ Rf (a) so the actual borrowing cost
with the fintech is Rf (a); since Rf (a) ≤ Rb (a) (from a ≤ ǎ) and Rf (a) ≤ rb, we have Rf (a) =
min

{
rf , Rf (a)

}
≤ min

{
rb, Rb (a)

}
and these borrowers would choose the fintech. For borrowers

with rb < Rf (a), they make full payments to the bank’s offer as rb ≤ Rf (a) < Rb (a), so the actual
borrowing cost with the bank is rb; since rb ≤ Rf (a) and rb ≤ rf , we have min

{
rb, Rb (a)

}
= rb ≤

min
{

rf , Rf (a)
}

and borrowers would choose the bank.

If instead rb > rf , since Rb (a) ≥ Rf (a) as well, we have min
{

rb, Rb (a)
}

≥ min
{

rf , Rf (a)
}

and borrowers choose the fintech.
ii) Case a > ǎ: in this case Rb (a) < Rf (a), and we show that borrower choice is reversed.
If rb ≤ rf , since Rb (a) < Rf (a) as well, we have min

{
rb, Rb (a)

}
≤ min

{
rf , Rf (a)

}
and

borrowers choose the bank.
If rb > rf , there are two subcases depending on whether Rb (a) ≤ rf . For borrowers with

Rb (a) ≤ rf , they will default on the bank’s offer as rb > rf ≥ Rb (a) so the actual borrowing
cost with the bank is Rb (a); since Rb (a) < Rf (a) (from a > ǎ) and Rb (a) ≤ rf , we have
min

{
rb, Rb (a)

}
= Rb (a) ≤ min

{
rb, Rf (a)

}
and these borrowers would choose the bank. For

borrowers with Rb (a) > rf , they make full payments to the fintech’s offer as rf < Rb (a) < Rf (a),
so min

{
rf , Rf (a)

}
= rf ; since rf < rb and rf < Rb (a), we have min

{
rf , Rf (a)

}
= rf <

min
{

rb, Rb (a)
}

and borrowers choose the fintech.

Proposition 5. Suppose w ≥ 1 − θ so that the bank is present.the fintech rejects borrowers with
a < â and makes an offer upon a ≥ â.

1. The fintech’s optimal information acquisition policy separates two intervals with an endoge-
nous cutoff â and rejects borrowers with a < â:

P∗f,w = {[a, â) , [â, a]} ; (41)

2. The bank always lends while the fintech lends when a ≥ â. The offered interest rates
{

rb, rf
}
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are randomized over a common support
[
r, Rb (â) ≡ θ+γâ

1−w − 1
]

according to

F b (r) =

1 − r
r , r ∈

[
r, Rb (â)

)
,

1, r = Rb (â) ,
(42)

F f (r |a ≥ â) = 1 −
1
r

∫ â
ab(r) Rb (a) dG (a) −

[
G (â) − max

{
0, G

(
ab (r)

)}]
1 − G (max {af (r) , â}) (43)

where r satisfies F f (r |a ≥ â) = 0.

3. The endogenous screening threshold â adopted by the fintech satisfies

(1 − w) h (w) min
{

Rf (â) , r
}

︸ ︷︷ ︸
MR: profit from marginal type

= c log
[1 − G (â)

G (â)

]
︸ ︷︷ ︸

MC: marginal information cost

Proof. We briefly argue that the fintech lender does not deviate from the stated strategy. In addition
to its lending technology, the competition environment that it faces also remains the same. To see
this, the stated equilibrium bank strategy has the same structure as in Theorem 1. Moreover,
borrower’s choice rule remains unchanged given the bank strategy: as rb ≤ Rb (â), bank loans are
endogenously riskless in competition for borrowers with a ≥ â; according to Lemma 7, borrower
choice remains the same.21 Hence, we refer to the proof of Theorem 1 for the argument on the
fintech lender. Note that the proof is robust to the new interest rate supports r, Rb (â) and the
cutoff â.

Now we argue that the bank does not have incentive to deviate. First, the bank is indifferent
across any rb ∈

[
r, Rb (â)

]
. In this range, bank loans are risky only for borrowers with a < â, and

lending profits

πb
(
rb; w

)
∝

∫ â

a︸︷︷︸
no fintech offer

min
{

rb, Rb (a)
}

dG (a) +
[
1 − G

(
max

{
â, af (r)

})] [
1 − F f

(
rb
)]

︸ ︷︷ ︸
bank quote is lower

rb.

Given the fintech’s strategy Eq. (42) and defining ã ≡ max
{

â, af (r)
}

, the previous profits equal

∫ â

a
min

{
rb, Rb (a)

}
dG (a) − rb

[
G (â) − max

{
0, G

(
ab (r)

)}]
+
∫ â

ab(r)
Rb (a) dG (a)

=
∫ â

a
Rb (a) dG (a) ,

which is the maximum bank profits from its captured borrowers with a < â.
Second, the bank earns no greater profit if it were to quote rb outside of the equilibrium support.

21Specifically, we check when borrowers choose the fintech lender, given the stated equilibrium bank
strategy. Borrowers with â ≤ a ≤ ǎ choose the fintech when either rf ≤ rb and rb ≥ Rf (a), which is the
same as in the baseline. Borrowers with a > ǎ choose the fintech when rf ≤ rb and condition rb ≥ Rf (a)
always fail.
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Suppose that the bank quotes rb > r. For borrowers with a ≥ â , since Rb (a) ≥ r = Rb (â) as
well and the fintech always quote below r, these borrowers always choose the fintech’s offer. As a
result, the bank receives the same lending profits as in equilibrium,

∫ â
a Rb (a) dG (a), so it is wlog to

assume that rb ≤ r. To check the bank’s deviation incentive to quote a lower rate rb < r, suppose
that it quotes rb = r − ϵ. If â ≥ af (r), the bank’s profits drops by ϵ

∫ a
max{a,ab(r)} dG > 0. If

â < af (r), the bank gains additional customer of type af (r − ϵ) but loses ϵ on existing customers.
The resulting change in its lending profits is −ϵ

{∫ â
max{a,ab(r)} dG +

∫ a
af (r) dG − r

}
which is negative

under Assumption 2.
Therefore, we have shown that the constructed strategies correspond to an equilibrium.

Remark 3. Proposition 5 shows that the credit competition outcome would be similar even if the
bank also cares about the underlying productivity for fundamental reasons. The paper highlights
the difference of the new fintech lending and thus focuses on the extreme case of the “private value
setting”, and this part shows that the main result does not rely on the private value assumption.
Remark 4. With the goal of showing robustness, we focus on markets w ≥ 1 − θ and leave the
full characterization of credit market equilibrium across w for follow-up research. One difference
is that the bank with better enforcement technology would also enter some riskier markets with
w < 1−θ. The results may still be robust, because the fintech may not enter these “mid-w” markets
conditional on bank presence.

7.3 Perfect Information Benchmark
As the fintech perfectly observes productivity a, I focus on riskless fintech loans with

rf (a) ≤ Rf (a) .

Technically, I need the following assumption so that riskless fintech loans are not restricting the
fintech’s strategies in equilibrium.

Assumption 4.
sup g (a) (βa − (1 − w))2

βG
(

1−w
β

) ≤ Rb (1 − w) .

Two points are worth noting. First, as the bank only cares the distribution of fintech quotes
F f (r), it is w.l.o.g to focus on increasing rf (a). Second, as there is no deadweight loss when default
occurs, multiplicity may arise due to payoff equivalent risky loans.

Proposition. The equilibrium is unique:

1. When w < 1 − θ, the monopolist fintech rejects borrowers with a < af (0), and otherwise
offers the highest rate Rf (a);

2. When w ≥ 1 − θ , the bank makes an offer with randomized interest rate rb ∈
[
rb, Rb

]
according to CDF

F b (r; w) = 1 − rb

r
, (44)
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where rb = RbG
(
af (0)

)
and there is a mass point of size G

(
af (0)

)
at Rb. The fintech’s

strategy is summarized as
mf (a) = 0, if a < af (0) ,

mf (a) = 1, rf (a) = Rf (a) , if af (0) ≤ a < af
(
rb
)

,

mf (a) = 1, rf (a) < Rf (a) , if a ≥ af
(
rb
)

,

where af (r) is given in Eq. (9), and rf (a) is determined by
In addition, bank profit is the monopolist profits on its captured borrowers,

πb ∝ Rb · G
(
af (0)

)
;

The fintech’s profit from each borrower type a is

πf
(

rf
∣∣∣ a; w

)
∝


0, if a < af (0) ,

Rf (a) , if af (0) ≤ a < af
(
rb
)

,

rb, if a ≥ af
(
rb
)

.

Proof. Step 1.1 The bank uses mixed strategy, and πb > 0.
For borrowers with a ≤ a < af (0), it is a dominant strategy for the fintech to reject them.

Suppose in equilibrium the bank uses pure strategy and offers rb. In this conjectured equilibrium,
the fintech must charge rf = rb −ϵ for all borrowers with a ≥ af

(
rb − ϵ

)
which is the best response.

Hence, with the resulting bank profit is G
(
af (0)

)
·rb, the bank has incentive to deviate to r′b = Rb.

Contradiction. As a result, the bank has captured borrowers with πb > 0, and the interest rates
must satisfy rb > 0 on the support of bank’s rate.

Step 1.2 Well-behaved mixed strategy F b (r) and F f (r) (the fintech’s distribution faced by
the bank)

It is useful to replicate lender profits here,

πf
(
rf
)

∝
∫ a(rf )

︸ ︷︷ ︸
low a

[
1 − F b

(
Rf (a)

)]
︸ ︷︷ ︸

winning prob

· Rf (a)︸ ︷︷ ︸
repayment

dG (a) +
∫

a(rf )
dG (a)︸ ︷︷ ︸

high a

·
[
1 − F b

(
rf
)]

︸ ︷︷ ︸
winning prob

· rf︸︷︷︸
repayment

, (45)

πb
(
rb
)

∝ G
(
af (0)

)
· rb +

∫
a(rb)

dG (a)︸ ︷︷ ︸
high a

·
[
1 − F f

(
rb
)]

︸ ︷︷ ︸
winning prob

· rb︸︷︷︸
repayment

, (46)

which highlights the effective cost with the fintech. The standard argument in literature (Var-
ian, 1980, for example) is, if in a conjectured equilibrium a lender’s distribution is unsmooth, its
competitor’s strategy must also be unsmooth locally, which usually results in profitable deviations.
From Eq. (45) and (46), if competitor’s distribution is unsmooth at rj , the term[

1 − F j′
(
rj
)]

rj
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would be driving lender j’s incentive around rj , so the argument would be robust.
Specifically, first, there is no interior mass point in F j (·), and one lender could have a mass

point at Rb. Otherwise suppose lender j has a mass point at r̂ < Rb in equilibrium. Then in this
conjectured equilibrium, (r̂, r̂ + ϵ) is not a subset of the other lender j′’s support: Suppose not;
then on any borrowers that lender j′ would charge r̂+ϵ potentially, it would strictly prefer charging
r̂ − ϵ. It follows that one profitable deviation for lender j is to increase the quote at mass point to
rj ∈ (r̂, r̂ + ϵ).22 Contradiction. The only exception is when the point mass is at r̂ = Rb. If both
lenders have a point mass, then both have a profitable deviation by undercutting the competitor.

Second, lenders’ upper support rb = rf ≡ r, and lower support rf = 0 < rb. It is wlog to focus
on rf ≤ rb. This is because when rf > rb, the fintech’s profit is a constant

∫ a(rb)
[
1 − F b

(
Rf (a)

)]
Rf (a) dG (a)

(the first term in Eq. 45) irrelevant of rf . If rf < rb, in the conjectured equilibrium, the bank with
captured borrowers must put all weight of rb ∈

[
rf , rb

]
at Rb. Then the fintech has a profitable

deviation by marginally increasing the interest rate rf − ϵ to rf + ϵ (on the corresponding borrow-
ers). As for lower supports, we have rb > 0 as bank profit is positive; within riskless loans, we have
rf = 0 charged on the borrower with zero NPV.

Third, there is no (interior) gap. Let (r′, r′′) refer to the potential gap. Suppose the bank
has a gap. Then for the borrowers that the fintech charges r′, it is a profitable deviation to
marginally increase the interest rate to r′ + ϵ (as the demand does not change). Suppose the
fintech has gap in (r′, r′′). According to Eq. (46), the bank’s profit when charging rb ∈ [r′, r′′] is
G
(
af (0)

)
rb + G

(
a(rb)

) [
1 − F f (r′′)

]
rb. So the bank cannot be indifferent across [r′, r′′] and has

a profitable deviation. Contradiction.
Step 1.3 The lender strategies in Proposition 7.3 constitute an equilibrium.
Bank strategy is such that given F b (r) the fintech’s strategy rf (a) maximizes its profits for

each a ≥ af
(
rb
)
, i.e.,

rf (a) = arg max
(
1 − F b

(
rf (a)

))
rf (a) (47)

s.t. rf (a) ≤ Rf (a) .

If rf (a) < Rf (a) holds genericall, FOC for rf is

−f b
(
rf
)

rf + 1 − F b
(
rf
)

= 0,

which leads to

F b (r) =

1 − rb

r , rb ≤ r < Rb,

1, r = Rb.
(48)

The sufficiency of FOC could be verified by the SOC

−2f b (r) − df b (r)
dr

· r = −2rb

r2 −
(

−2rb

r3

)
· r = 0.

If instead rf (a′) = Rf (a′) for some neighborhood of a′, we would have −f b
(
rf (a′)

)
rf + 1 −

22If lender j is the fintech, this deviation could still be focused on riskless loans.
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F b
(
rf (a′)

)
> 0 and F b (r) ≤ 1 − rb

r .23 This case will be ruled out when deriving the fintech’s
strategy.

From F b (r) ≤ 1 − rb

r , it follows that F b (r) has a point mass at r while F f (r) is open at r.
In addition, as the bank has captured borrowers, r = Rb, or otherwise the bank has a profitable
deviation to increase r.

Fintech’s strategy over rf ∈
[
rb, Rb

)
is such that given F f (r), the bank is indifferent across[

rb, Rb
]
. As the bank only cares about F f (r), it is w.l.o.g. to focus on increasing rf (a); and

since F f (r) is smooth, rf (a) is strictly increasing. This allows me to introduce the inverse ϕ (r) ≡[
rf (a)

]−1
to denote the marginal borrower who is charged with rf = r. Then bank profit is

πb (r) ∝

 G
(
af (0)

)
︸ ︷︷ ︸

fintech rejected

+ 1 − G (ϕ (r))︸ ︷︷ ︸
winning prob

 r.

The indifference condition pins down rf (a) over
[
af
(
rb
)

, a
]

by the following ODE

drf (a)
da

= r (a) g (a)
G (af (0)) + 1 − G (a) , (49)

The boundary conditions are

rf
(
af
(
rb
))

= Rf
(
af
(
rb
))

= rb, rf (a) = Rb,

where rb is pinned down by the bank’s indifference condition between rb and Rb:[
G
(
af (0)

)
+ 1 − G

(
af
(
rb
))]

rb = G
(
af (0)

)
Rb.

With Assumption 4, we have

drf (a)
da

= r2 (a) g (a)
G (af (0)) Rb

≤

[
Rf (a)

]2
g (a)

G (af (0)) Rb
≤ β

1 − w
.

so that ODE (49) indeed satisfies rf (a) ≤ Rf (a), and generically the inequality is strict. This
further pins down the banks strategy as Eq. (48).

Step 2 Uniqueness.
As rb > 0, it is a dominant strategy for the fintech to reject borrowers if and only if a < af (0).

In Step 1, in any equilibrium, the bank smoothly randomizes over
[
rb, Rb

]
with a point mass at

Rb. These combined with increasing rf (a) guarantee uniqueness.
Step 3 Profits.

23Intuitively, only when the competitor bank is not aggressive enough in equilibrium, the fintech would be
hand-tied by βa from increasing its quote.
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Bank profit is
πb ∝ G

(
af (0)

)
Rb.

Fintech profit is

πf ∝
∫ af (rb)

af (0)
Rf (a) dG︸ ︷︷ ︸

intermediate a

+
∫ a

af (rb)

(
1 − F b

(
rf (a)

))
rf (a) dG︸ ︷︷ ︸

high a, compete with bank

=︸︷︷︸
F b(r)=1− rb

r

∫ af (rb)
af (0)

Rf (a) dG +
∫

af (rb)
rb

rf (a)rf (a) dG

=
∫ af (rb)

af (0)
Rf (a) dG + rb

[
1 − G

(
af
(
rb
))]

.

The algebra also shows the conditional fintech profit for each type a.

7.4 Proof of Proposition 3
A full characterization of the equilibrium is as follows.

Proposition. Suppose information cost c = ∞. The credit competition equilibrium is unique.

1. When w < 1 − θ, only the fintech makes an offer rf = Rf (a) iff E
[
Rf (a)

]
≥ 0;

2. When 1 − θ ≤ w ≤ ŵ where rf,be (ŵ) = Rb (ŵ), only the bank makes an offer rb = Rb;

3. When w > ŵ, the bank always makes an offer whereas the fintech randomly makes an offer
with probability mf ; an offer’s interest rate is randomized over common support

[
rf,be, Rb

]
according to CDF F b (r) = 1 − rf,be

r and F f (r).

Proof. Part 1) readily follows from the bank exiting w < 1 − θ. For Part 2) versus Part 3), note
that Rb (w) = θ

1−w − 1 increases in w, and rf,be (w) decreases in w as shown from the implicit
function theorem,

∂rf,be (w)
∂w

= −
∂πf (r,w)

∂w
∂πf (r,w)

∂r

< 0;

as a result, there exists ŵ with rf,be (w) > (<) Rb (w) when w < (>) ŵ. Then for the case of Part
2), the fintech exits because lending incurs losses, and the monopolist bank charges Rb.

For Part 3) when w > ŵ, I first argue that the equilibrium is in well-behaved mixed strategies.
Since being uninformed is a special case of information structure, the results in Theorem 1 apply.
To be more specific, when making an offer, lenders randomize interest rates over common support
[r, r] according to smooth distributions, except that one lender may have a point mass at r.

Then I characterize the equilibrium. In this case, r = Rb and r = rf,be. A lender makes the
same profits when quoting any r ∈

[
rf,be, Rb

)
. When evaluated at r = rf,be, we have πf

(
rf,be

)
= 0
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and πb
(
rf,be

)
∝ rf,be > 0; so the fintech randomly makes an offer with probability mf and the

bank always makes an offer.
The bank’s profit over r ∈

[
rf,be, Rb

]
is

πb (r) ∝ (1 − mf )︸ ︷︷ ︸
no fintech offer

r + mf︸︷︷︸
fintech offer

[
1 − F f (r)

]
︸ ︷︷ ︸

P r. rf >rb

·
[
1 − G

(
af (r)

)]
︸ ︷︷ ︸

P r. Rf (a)>rb

r. (50)

The fintech’s profit is

πf (r) ∝
[
1 − F b (r)

]
· E
[
min

(
Rf (a) , r

)]
+
∫ r

r

∫ af (s)

a
Rf (a) dG (a) dF b (s) .

A lender’s equilibrium strategy is pinned down from the competitor’s indifference condition, so

F b (r) = 1 − r

r
.

F f (r) = 1 − r

r
+ 1 − mf

mf
· r − r

G (af (r)) r
,

where the boundary condition at r = Rb yields

1 − mf =
G
(
af (r)

)
r

G (af (r)) r + r − r
.

7.5 Appendix for Section 4.3
Lemma 8. Equilibrium information structure profile {P∗w}w∈[0,w] corresponds to a collection of
thresholds â1, â2, · · · ân such that in each w, the fintech chooses the optimal â among â1, â2, · · · ân

as the lending standard.

Proof. Since the benefit (lending profits) and cost of learning are additively separable across mar-
kets, the same argument in the proof of Theorem 1 applies in each market w: the information
structure features a threshold learning, and lending profit only depends on the screening standard.
Therefore, it is w.l.o.g. to find â1, â2, · · · ân, and in each w, the fintech chooses the optimal one as
screening threshold.

For illustration purpose, I use âh (high) and âl (low) to denote the two potential thresholds
between which the fintech considers to adopt in a generic market w.

Proof of Proposition 4
Proof. I show that as w increases, a relatively high screening standard can no longer support
an equilibrium—the incentive to deviate to âl increases with w. The fintech’s net profit in the
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conjectured equilibrium is

Y (âh, w) ≜ πf (âh; w) − δcI (âh) dw

∝

(1 − w) h (w) ·
∫ a

âh
Rf (a) dG (a) − δcI (âh) , w < 1 − θ,

(1 − w) h (w) ·
∫ a

âh
min

{
r, Rf (a)

}
dG (a) − δcI (âh) , w ≥ 1 − θ,

where r is the equilibrium lower interest rate. Then the incentive to deviate to âl is

Y (âl, w) − Y (âh, w)

∝

(1 − w) h (w) ·
∫ âh

âl
Rf (a) dG (a) − δc [I (âh) − I (âl)] , w < 1 − θ,

(1 − w) h (w) ·
∫ âh

âl
min

{
r, Rf (a)

}
dG (a) − δc [I (âh) − I (âl)] , w ≥ 1 − θ,

where equilibrium price r is taken as given. Since (1 − w) h (w) Rf (a) increases in w, the deviation
incentive increases in w.

Expansion with History

Example 1. Suppose that the fintech currently resides in a relative poor markets
(
w, w(1)

)
where

a high screening standard âh is used, and it would choose to enter new markets
(
w(1), w(2)

)
—up

until threshold market w(2) < w. Along with the expansion, it may acquire new information for
setting a lower screening standard âl, and the new standard may be used in both the new markets
and some of the existing markets. In this regard, let ŵ ∈

(
w, w(2)

)
denote the threshold market at

which the screening standard is reduced to âl from âh. To clarify, âl, w(2), ŵ are endogenous, but
the Envelope Theorem allows us to focus on the direct effects when making the decision on ŵ.

The fintech’s net profit when adopting an existing lending â in market w is

Y (â; w) = dw

{
(1 − w) h (w)

∫ a

â
min

{
Rf (a) , r (â)

}
g (a) da − δcI (â)

}
.

where r (â) is the equilibrium lower bound of the lenders’ randomized interest rates. Let ∆Φ (ŵ)
denote the gain from expansion if the screening standard is adjusted at ŵ, given the optimal
expansion w(2) and information acquisition âl:

∆Φ (ŵ) = max
âl,w(2)

{∫ w(1)

ŵ
[Y (âl) − Y (âh)] +

∫ w(2)

w(1)

Y (âl)
}

.

When w is sufficiently small, the fintech does not have incentive to acquire a new threshold âl,
because the potential usage of the new information is small. To see this, the incentive to adopt
âl in a specific market w is Y (âl; w) − Y (âh; w), which is exactly −∂∆Φ(w)

∂w . Given the fact that
the fintech’s current information structure in existing markets is optimal, there is no incentive to
deviate to âl in market w+

(1), or −∂∆Φ(w)
∂w |w=w+

(1)
< 0. The condition says that the fintech would like

to adjust lending standard only in even wealthier markets. So if w is small, the fintech may never
acquire new information and uses only one threshold âh.
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