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Abstract

Using a difference-in-differences design based on exogenous cyber incidents, we docu-
ment that successful cyberattacks on small US banks reduce deposit growth at branches
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Cyberattacks lead to a redistribution of deposits in favor of the dominant or largest
(unaffected) banks in the local deposit market and generate negative consequences for
the affected banks also in the mortgage market. Overall, our analysis shows that cy-
berattacks reduce the trust of bank customers by generating bank-specific reputational
damages and highlight how costly financial constraints in cybersecurity investments can
be for small banks.
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1 Introduction

With the fast-growing technological content of banking products, cybersecurity represents

a key and rising concern for regulators and bankers1. FDIC Chairman Jelena McWilliams

stated that “[c]ybersecurity is the biggest threat facing America’s banks”2. Indeed, the bank-

ing industry is seen as particularly vulnerable to cyber risks because of its high degree of

interconnectedness, IT intensity and dependence on customer information as key inputs to

the production process (Basel Committee on Banking Supervision, 2018; Duffie and Younger,

2019; Crisanto and Prenio, 2017; Eisenbach et al., 2020; Mester et al., 2019). Cyberattacks

can lead to a loss of trust in stakeholders, and this loss might be especially detrimental in

banking and challenge the sustainability of its business model (Chen et al., 2019; Kamiya

et al., 2020).

Maintaining high cybersecurity protection of bank clients and minimizing the reputational

damages that arise when cyber incidents occur have become key objectives for financial

institutions (Kashyap and Wetherilt, 2019). According to a recent survey by Deloitte (2019)

the average yearly investment by banks on cybersecurity has now surpassed 10% of the

overall IT budget, equivalent to $2,300 per employee. In this landscape, small banks appear

strongly disadvantaged. Although exposed to similar cyber risks as large banks, small banks

find it more difficult to maintain this significant investment in human capital and technology

required to protect their customers due to limited resources. Indeed, Nationwide reports that

small banks with assets less than $1billion fall victims to almost half of cybercrimes between

2012-20173. It is not surprising, therefore, that more than 70% of small bankers have recently
1See “US banks face tighter scrutiny of cyber defences”, FT (2019), available at

https://www.ft.com/content/69a25232-8eaa-11e9-a1c1-51bf8f989972; “Heightened Cybersecurity Risk
Considerations”, FDIC (2020).

2See “Banks could get fined for cyber breaches, top regulator says”, CNN (2019), available at
https://edition.cnn.com/2019/08/01/investing/fdic-cyber-hack-fine/index.html.

3See “5 Cybersecurity Myths Banks Should Stop Believing”, Forbes (2019), available at
https://www.forbes.com/sites/ronshevlin/2019/04/08/5-cybersecurity-myths-banks-should-stop-
believing/#6c83bb1d630d.
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ranked cybersecurity as their top concern (Conference of State Bank Supervisors, 2019).

Despite the pervasiveness of cybersecurity risks in the banking industry, however, there

is no empirical assessment of how deficiencies in cybersecurity affect the business of small

banks. This assessment is important to shed light on whether inadequate cybersecurity

investments might reduce confidence on these banks and, consequently, hinder their key role

in supporting the development of small businesses and the local economy. In fact, small

banks have informational advantages in lending to small businesses which account for 99.7%

of employee firms and almost half of private-sector employees (Stein, 2002; Liberti and Mian,

2008; Berger et al., 2005; Berger and Turk-Ariss, 2015; Agarwal and Hauswald, 2010; Hakenes

et al., 2015; Skrastins and Vig, 2019). Furthermore, examining the implications of cyber risks

on small banks is important to understand the benefits of adopting mechanisms, based on

coordinated industry and regulatory initiatives that reduce financial constraints on these

banks, to increase protection and mitigate losses in the case of cyberattacks that affect the

trust of bank customers4.

This paper offers the first empirical study of the consequences of cyberattacks on the

market position of small banks. We base our analysis on exogenous data breaches involv-

ing small US banks covered in the Privacy Rights Clearinghouse (PRC) database over the

period 2005-2017. We employ these exogenous events to implement difference-in-differences

analyses that primarily assess how successful cyberattacks influence depositor behavior and,

consequently, the competitive position of a small bank in the deposit market. Our focus

on this market is motivated by two reasons. First, depositors can be significantly damaged

by data breaches that compromise the confidentiality of personal information, potentially

resulting in fraud, identity thief and subsequently, financial losses. Second, and more impor-

tantly, deposit markets are a key source of funding for small banks and their relationships
4See, for instance, “Countering Cyber Risk for Community Banks and Their Small Business Part-

ners”, Independent Community Bankers of America, available at https://www.icba.org/docs/default-
source/icba/advocacy-documents/testimony/2015th-congress/testimony-3-8-17.pdf?sfvrsn=b73b6617_0.
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with depositors are based on trust (Chen et al., 2019). Therefore, if cyberattacks damages

the trust extended by depositors to small banks and leads to a weakening of banks’ position

in deposit markets, the long-term sustainability of the entire business model of these banks

might be affected.

We start by documenting that the branches of small banks targeted by a data breach

experience a significant slowdown in the growth rate of their deposits as compared to a

control group of branches of banks of similar size. The effect of the cyberattack on deposits

is also economically large. We find that a successful cyberattack reduces the average growth

rate of deposits in the affected branches by more than 20 percentage points relative to the

control group. Consequently, this leads to a decline in deposit market share. Our results are

robust to a number of alternative empirical settings, including the adoption of the estimation

approach of Bertrand et al. (2004) and the aggregation of the deposit data to the bank-county

level.

Our result is consistent with a demand-side interpretation wherein depositors react to

negative reputational shocks following data breaches on small banks that reduce depositors’

confidence in affected banks. However, recent studies document that not all depositors react

in the same way to negative information on bank financial and social performance (Chen

et al., 2019, 2020). In particular, Duffie and Younger (2019) and Eisenbach et al. (2020)

argue that the consequence of cyber risk can be framed in the context of bank runs. From

this perspective, the negative effects for banks can be driven primarily by more informed

depositors or, alternatively, by less informed depositors when ‘panic’ is a key driver of the

reaction. In a series of tests, we find evidence in line with a stronger effect from depositors

that are plausibly less knowledgeable about cyber risk. This result complements findings

by Chen et al. (2019) and Chen et al. (2020) who show that more sophisticated depositors-

presumably due to the ability to understand information- display stronger reaction to more

technical disclosures such as bank earnings and regulatory ratings on community involve-
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ment. Our findings suggest that cyberattacks, which are more salient and directly impact

depositors, are likely to incite larger responses from unsophisticated customers of the bank

who might not be fully aware of the consequences and remediation processes following data

breaches.

We next document that the response of depositors to cyberattack on small banks de-

pends also on the market strength of its competitors. We show that the negative effects in

terms of deposit growth for the branches belonging to affected small banks are larger in local

deposit markets where competitors have a stronger leadership in terms of branch networks.

We interpret this finding as indicating that negative reputational signals produced by cyber-

attacks on small banks are more pronounced when competitors have a strong reputational

advantage (Dick, 2007).

Next, we test if negative reputational damages produced by a cyberattack might lead

to negative consequences on small banks in terms of funding costs. Small banks might be

forced to counterbalance the reputational loss produced by the cyber incident by offering a

higher remuneration in their deposit products in order to maintain (or establish) contractual

relationships with creditors. Accordingly, we examine whether the deposit rates offered by

small banks to depositors change after cyberattacks. While we do not find a generalized

increase in funding costs for branches of treated banks, we provide evidence of a response

that differs across local deposit markets. We show that affected branches increase the offered

rates only if located in markets where competitors do not have a strong advantage in their

market leadership. Simultaneously, we observe a decrease in rates in markets where it is

costlier to retain deposits because customers have more opportunities to switch to banks

with a strong market leadership (Berger and Turk-Ariss, 2015; Jacewitz and Pogach, 2018).

Essentially, our results indicate that, in response to cyberattacks, small banks modify the

pricing policy of deposit products with the purpose of defending their market position in

only some selected local markets to limit the overall increase in funding costs.
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After examining the effects of cyberattacks on deposit growth rates and funding costs, we

examine if cyberattacks generates spillover effects in local deposit markets. There are two

contrasting views on the potential direction of these spillovers. A first view indicates that

reputational damages can spread at the industry level and generate negative spillovers on

unaffected banks. Using a sample of non-financial firms Kamiya et al. (2020) show negative

value effects for firms operating in the same industry as those targeted by cyberattacks.

Eisenbach et al. (2020) point out that in the case of financial institutions, cyberattacks can

generate negative spillovers to other institutions via network effects (for instance, through the

payment system). A second view suggests that the reputational consequences might remain

bank specific and accordingly favor the reallocation of deposits towards other banks (Chen

et al., 2019). We find evidence in support of this latter argument. We show that cyberattacks

generate positive spillovers although only towards branches of non-affected dominant or large

banks.

In a final group of tests, we analyze whether cyberattacks have negative reputational

implications on the lending business of treated banks. Focusing on the mortgage segment

of the lending market, and using the Home Mortgage Disclosure Act (HMDA) database, we

conduct two sets of tests. The first takes the borrower perspective and examines the effects

of cyber incidents in terms of the number and composition of mortgage applications that

affected banks receive. The second focuses on the bank perspective and assesses the conse-

quences of the incident on underwriting standards. We do not find that treated banks suffer

from a decline in the number of mortgage applications after reputational shocks. Neverthe-

less, we document that the affected banks are more likely to attract riskier borrowers after

the exogenous cyber incident and are forced to relax their lending standards to maintain

mortgage approval rates.

Taken together, our findings document that cyberattacks undermine the trust of bank

customers on the affected banks and generate significant bank-specific reputational damages
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but not negative spillovers on other (unaffected) institutions. These damages result in nega-

tive business effects in the deposit market for affected banks that take the form of a reduced

competitive position. Reputational damages from cyberattacks also seem to partially affect

treated banks in mortgage markets, not by a reduction in the nominal amount of loans

received but by quality of loans that were received.

We contribute to three streams of research. The first consists of the growing literature on

cyberattacks to corporations. To date this literature has primarily focused on non-financial

firms and documented that the negative reputational effects produced by cyberattacks result

in reduced shareholder value and risk appetite (Kamiya et al., 2020), decreased profitability

(Akey et al., 2018), higher borrowing costs and tighter covenant intensity (Binfare, 2020) and

higher audit fees (Li et al., 2020; Rosati et al., 2019). However, empirical investigations on

the implications of cyberattacks on bank outcomes are almost non-existent. Eisenbach et al.

(2020) simulate the potential externalities produced by cyberattacks through the wholesale

payments network and show that damages to the five most active banks would affect more

than a third of the network. Bouveret (2018) presents a cross-country overview of cyber risk

in the financial industry and proposes a framework for its quantification. Aldasoro et al.

(2020) examine the evolution of the losses due to cyber events in the context of a broader

examination of the dynamics of operational risks in a cross-country setting. They document

that although cyber losses represent only a fraction of total operational losses, they account

for a significant portion of total operational value-at-risk.

Our analysis offers the first empirical investigation of the impact of data breaches on

banks by taking the perspective of small bank customers and not the shareholder perspec-

tive typically adopted in studies on non-financial firms. The banking industry provides an

appropriate laboratory to exploit this perspective as the banking business is built on trust

and confidence in the deposit market that when undermined, might have long-term negative

implications for a bank.
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Second, our analysis relates to the literature on operational risks in banking. Earlier

studies show that most of the operational losses at US financial institutions are produced

by failures in internal control systems (Chernobai et al., 2011). Along these lines, and more

recently, Chernobai et al. (2020) document that operational risks are more pronounced in

complex banks. Barakat et al. (2019) highlight the reputational damages in terms of value

effects arising from media announcements of operational risk events especially when the

information on the event is opaque. Although frequently classified as part of operational

risks, cyber risk shows key peculiarities related to the potential loss of confidentiality and

availability of data or to damages to the integrity of data or systems (Eisenbach et al., 2020;

Mester et al., 2019). These aspects are a potential concern for all stakeholders that engage

in a contractual relationship with a bank and motivates our focus on deposit markets. Yet,

contrary to existing studies on operational risks, we conduct our investigations only on events

produced by external data breaches that are plausibly exogenous, allowing us to evaluate

the causal implications of cyber risk on depositor behavior.

Finally, our analysis contributes to the literature on how depositors react to the disclosure

of negative public information on banks. A first group of studies focuses on the disclosure of

financial information by banks (Chen et al., 2020; Berger and Turk-Ariss, 2015; Iyer et al.,

2016; Martinez Peria and Schmukler, 2001). The general consensus is that depositors react

negatively in the presence of financial information highlighting negative bank performance,

although there is heterogeneity in the response depending on the ability and incentives of

depositors to monitor banks (Chen et al., 2020; Danisewicz et al., 2018). More closely related

to our analysis are studies on how depositors respond to negative non-financial information.

Chen et al. (2019) document that banks are more likely to suffer from larger deposit outflows

when they show poor social performance measured through CRA ratings and CRA ratings

downgrades. Homanen (2018) finds a similar negative effect in banks that financed the

2016 Dakota Access Pipeline project which crossed major rivers and ancient burial grounds.

8



None of these studies, however, focuses on non-financial events that can directly affect the

contractual relationships between a bank and its depositors and documents how such events

influence the re-distribution of deposits in a local market. The rest of the paper is structured

as follows. Section 2 describes our empirical design with a particular focus on the sample

and econometric setting. Section 3 presents the empirical results and Section 4 provides

conclusions.

2 Identification Strategy and Data

2.1 Treated Banks and Econometric Model

We base our identification strategy on cyberattacks on small US commercial banks reported

between 2005-20175. We identify these attacks starting from the list of all data breach

incidents involving financial institutions covered in the Privacy Rights Clearinghouse (PRC)

database over the same period. The use of the PRC database is a conventional choice in the

literature on cyberattacks and includes breaches that are reported in a timely manner under

State Security Breach Notification Laws (Akey et al., 2018; Kamiya et al., 2020).

From the initial list of events involving financial firms, we retain in the sample only

cyberattacks that satisfy three requirements: i) they are due to external data breaches (and

not to bank employees) through which banks lost customer personal information by hacking

or malware-electronic entry; ii) they target a small commercial bank (defined as a bank with

total assets smaller than $10bln at the time of the data breach); iii) they affect banks for

which we can identify detailed deposit data from the Summary of Deposits (SOD) provided

by the FDIC. The first criterion ensures that the data breaches are plausibly exogenous and

not caused by bank mismanagement. By applying these selection criteria, we identify 16
5We do not include more recent cyberattacks in our sample because the implementation of our identifi-

cation strategy requires at least three years of bank data after the attack has been reported.
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cyberattacks to small banks. Table 1 reports the list of these events and their description.

[TABLE 1 HERE]

The SOD offers information on deposits at the branch level and gives us the opportunity

to implement a tight geographic matching between the branches of the small banks targeted

by a cyberattack and branches in the control group. The tight geographic matching between

the treated and the control group is important to limit confounding factors that make it

difficult to control for if our focus is on a broader geographic region. For instance, Becker

(2007) finds that cities with a higher fraction of seniors also have higher volumes of deposits.

If seniors react differently to cyberattacks, and have different deposit trajectories, comparing

branches from different regions might bias our results. More generally, by relying on data

from the same, restricted geographic market for the two groups of branches, we reduce the

potential impact of omitted factors that influence the supply and demand of deposits.

Specifically, we construct our econometric setting by identifying all branches of an affected

small bank at the county level within the state where the cyberattack was reported. These

branches represent our treated group. Next, for each county in a state where branches of a

treated bank operate, we form a control group of branches that are owned by a commercial

bank that has a similar size as the treated one. To ensure a high degree of similarity in

size between the treated and untreated small banks, we proceed as follows. We divide the

treated banks with assets below the $10bln threshold in two size-based groups. The first

group includes small banks with assets up to $1bln and the second group includes treated

banks with assets between $1bln and up to $10bln. When we match the branches of treated

and control banks, the control group consists only of the branches of untreated banks falling

into the same size group. Additional tests, reported in the Online Appendix, show that our

results remain unchanged when we employ a tighter size matching.
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Given the staggered nature of cyberattacks, similar to Gormley and Matsa (2011), we

use a stacked difference-in-differences approach to estimate the causal impact of cyber risk

on depositor behavior. We construct cohorts composed of treated branches for each cyber

event and stack the events to estimate the average treatment effect. When constructing the

next cohort, we include in the control group only branches of banks that have not previously

experienced a cyberattack. This choice allows us to more cleanly capture the treatment effect

(Gormley and Matsa, 2011; Guo et al., 2019). We estimate the average treatment effect using

an estimation window of (-3;+3) years around each cyberattack for a total of 3,076 (12,384)

observations belonging to branches of treated (untreated) banks. More formally, we estimate

the following model:

(1)
Ln(Deposits)i,j,z,c,t = α + βTreated× Post + BRANCH

+ COUNTY×TIME + εi,j,z,c,t,

Where Ln(Deposits) is the logarithmic transformation of the amount of deposits in branch

i of bank j in county z, and belonging to a cohort c at time t. Treated is a dummy that

equals one if a branch belongs to a bank that has suffered from an exogenous cyberattack

in the sample period and zero otherwise; Post is a dummy equal to one in the post-shock

window (up to 3 years post the shock). The difference-in-differences estimate of the coefficient

of Treated × Post is the difference between how the dependent variable changes in the

branches of treated banks (namely, banks affected by the cyberattack) and in the branches

of the untreated banks after the shock. Given that our dependent variable is measured as

the logarithmic transformation of bank deposits in a branch, the estimated coefficient is

approximately equivalent to the difference in the average growth rate of the US dollar value

of deposits in the groups of branches of treated and untreated banks from the pre to the

post shock period.

The model includes branch fixed effects (BRANCH) to control for any branch-specific
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differences. Furthermore, depending on the estimated specification, COUNTY × TIME

is a vector of county × year fixed effects to account for time variant county factors that

influence the deposit market. We estimate equation (1) with standard errors clustered at

the bank-level to control for within bank correlation in the evolution of deposits across

different branches. However, in the robustness section we document that our results remain

unchanged if we cluster the standard errors at the commercial bank level.

[TABLE 2 HERE]

Initially, we do not include in equation (1) bank-specific control variables. This choice is

motivated by the fact that any bank control is also likely to be affected by the cyberattack,

making it difficult to draw any appropriate inference based on the coefficient of Treated ×

Post (Gormley and Matsa, 2011). Nevertheless, to mitigate concerns over omitted variables,

we also report the results when we add to (1) a vector including a limited number of bank

controls. This vector consists of the logarithmic transformation of bank total assets measured

in thousands of US$ (Size), the ratio between net income and total assets (ROA), the tier

1 capital ratio (Tier 1), the fraction of non-performing loans to reflect credit risk (NPL),

total loans divided by total assets (Loan) and the ratio between total assets and the number

of employees (Productivity) that we employ as a proxy for bank productivity. Panel A of

Table 2 show key summary statistics.

2.2 Comparing the Treated and Control Group and Testing for Par-

allel Trends

Our empirical strategy requires that the untreated group represents an adequate counter-

factual. In this section, we present several stylized facts to confirm that our setting satisfies

this requirement.
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We start by showing that the branches, and the related commercial banks, in the treated

and control groups are sufficiently similar in their characteristics before the cyberattack

was reported. Columns (2) and (3) of Panel B of Table 2 show the average values of our

dependent variable and bank controls for the treated and control group in the year before

the event. Column (4) reports the normalized difference in bank characteristics between the

two groups of banks (Brown and Earle, 2017; Nicoletti, 2018). The difference is defined as

follows:

(2)NDIFF =
x̄i − x̄j√
s2
i + s2

j

,

Where x̄i (s2
i ) is the mean (variance) of a variable for one of the untreated groups and

x̄j (s2
j) is the mean (variance) of the same variable for the treated group. We note that the

differences between the control group and the treated group are below the threshold value of

0.25. Imbens and Wooldridge (2009) highlight that a value below this threshold is necessary

to ensure that the two groups of observations are sufficiently homogenous.

A further key assumption of a difference-in-differences setting is that in the absence of

the cyberattack, treated and untreated branches would have shown a similar evolution in

the amount of deposits. This assumption cannot be directly validated because we cannot

observe the evolution of deposits in the treated group in the absence of the cyberattack.

However, we follow a conventional approach in the literature to show that the parallel trend

assumption is plausible. We examine if there are trend differentials between the treated and

untreated groups before the exogenous event occurs. Essentially, if the two groups of banks

follow similar trends in the value of deposits prior to the cyberattack, it is reasonable to

conclude that the parallel trend assumption is not invalid.

To investigate pre-shock trend dynamics in the two groups we conduct three analyses.

First, we follow Lemmon and Roberts (2010) and report in columns (1) and (2) of Panel C
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of Table 2 the average one-year change in the dependent variable across the two groups in

the 3 years preceding the cyberattack. In column (3) we show the differences in the yearly

change between the two groups of banks. For the parallel trend assumption to be plausible,

these differences should not be statistically different from zero. Column (4) documents this

is the case (according to a difference in means t-test).

Second, in Panel D we test for any pre-shock differential in trends in Ln(Deposits) using

a regression model as in Chen et al. (2018) and Lin et al. (2020). We estimate our regression

specification with Ln(Deposits) as the dependent variable and interact our treated dummy

with yearly dummies (jtq) for the q lags/leads of the period around the cyberattack. The

model includes branch and county × year fixed effects. A necessary condition for the parallel

trend assumption to be plausible is that the two groups of branches do not show significant

differences in the deposit dynamics in the years prior to the shock. Along these lines, we

find that none of the coefficients on the interaction terms between the treated dummy and

the year dummy variables before the cyberattack is statistically significant at conventional

levels.

[FIGURE 1 HERE]

Finally, Figure 1 plots the estimated trend in Ln(Deposits) in the two groups of branches

in the 3-year period before and after the cyberattack. We estimate the trends from a linear

specification that accounts for fixed effects and bank controls. This Figure does not show

clear differences in the trends followed by the two group of branches in the 3-year period

preceding the cyberattack. The two trend lines seem instead to follow very different trends

in the post-period where we observe a clear decline in the trend for treated branches as

compared to the other branches.

14



3 Empirical Results

3.1 Deposits and Cyberattacks

This section shows how branch deposits of treated banks change in response to exogenous cy-

berattacks. We begin in Panel A of Table 3 with a simple univariate difference-in-differences

analysis to estimate the average treatment effect. We compute the average differences in

Ln(Deposits) between the post and the pre-event period for groups of treated and untreated

branches and then test whether these differences significantly differ between the two groups

using a t-test of mean equality. We find that, although both groups show a significant in-

crease in Ln(Deposits) over the event window, the increase is significantly smaller for treated

branches. This preliminary finding is consistent with a negative reputational effect in the

deposit market arising from the cyberattack that results in a slowdown of deposit growth

for affected small banks.

[TABLE 3 HERE]

In Panel B of Table 3, we extend the analysis of the estimation of the average treatment

effect to a multivariate setting based on equation (1). As mentioned earlier, the key coefficient

is the interaction term Treated × Post that measures the change in the dependent variable

(Ln(Deposits)) in the treated group from the pre-shock period to the post-shock period as

compared to the same change observed in the control group. We initially report the estimates

from a model that only controls for branch and county× year fixed effects to avoid the bias

arising from “bad” bank-specific controls. Next, in column (2) we control for bank size and

in column (3) we add the remaining controls.

Throughout all specifications, and in line with the univariate analysis, the coefficient of

Treated × Post is negative and statistically significant. This coefficient ranges from -0.216
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in column (3) to -0.251 in column (1). Ultimately, the result consistently indicates that

branches of banks affected by a cyberattack experience a decrease in the growth rate of their

deposits as compared to the control group. The magnitude of the decrease in deposit growth

is also economically large: using the model in column (3), we find that the treated branches

report a deposit growth rate that is approximately 22 percentage points lower as compared

to what we observe in the control group. Notably, none of the controls have a significant

effect on the dependent variable.

A possible concern for our results is that the matching between treated and untreated

banks does not fully remove the influence of unobserved bank heterogeneity due to size

differentials. In the Online Appendix, we mitigate this concern by further refining our

matching approach. Specifically, we divide the two size bins, banks up to $1bln and banks

from $1bln to $10bln into quartiles. For instance, the first quartile of the first (second)

size bin goes up to $250mln ($2.5bln). We then match banks in the treated group with

untreated banks falling in the same quartile within each size category. As shown in the

Online Appendix, this alternative matching approach reduces significantly the number of

observations in our sample but leaves our key result largely unchanged.

In summary, the results above suggest that cyberattacks have significant funding impli-

cations for the affected branches that depend on depositors’ behavior. While other studies

on non-financial firms have shown the firm-level consequences of cyberattacks by taking the

perspective of shareholders (Akey et al., 2018; Kamiya et al., 2020), we document how cy-

berattacks have implications on treated firms through the choices made by key stakeholders

(namely, bank depositors).
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3.2 Robustness Tests

3.2.1 Alternative Econometric Specifications

Table 4 reports additional specifications to show the robustness of our findings. First,

Bertrand et al. (2004) argue that biased standard errors might arise from difference-in-

differences analyses that focus on serially correlated outcomes. One of the remedies to

mitigate this bias is to collapse the estimation period to one period before and one period

after the shock. In the first, three columns of Panel A of Table 4 we show that our key result

still holds under this alternative approach.

In the next three columns, we collapse the county-branch level observation to the bank-

county level. This empirical design allows us to understand the overall effect of cyberattacks

on deposit growth rates in local markets. We estimate several models at the bank-county

level without and with bank controls. Each model includes bank fixed effects, county ×

year fixed effects and employs standard errors clustered at the bank level. In line with our

branch-level analysis, we find that banks affected by cyberattacks show a relative decline in

the growth rate of their deposits at the county-level as compared to banks in the control

group.

Next in the first three columns of Panel B, we modify the baseline models by replacing

county×year fixed effects with state×year fixed effects to account for the possibility that

demand factors in the deposit market are influenced by state-level variables. Finally, in

the last three columns of the same Panel, we re-estimate the initial branch-level models by

clustering the standard errors at the branch (and not at the bank) level. All our findings

remain largely unchanged when we employ these different empirical settings. Finally, in the

Online Appendix, we follow Gormley and Matsa (2011) and replace branch fixed effects with

branch × cohort fixed effects. Again, we find that our results remain largely unchanged.

[TABLE 4 HERE]
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3.2.2 Falsification Test

In this section we further validate a causal interpretation of our results by implementing a

falsification test. Specifically, we falsely assume that the cyberattacks happened four years

before their actual date and then re-estimate the different model specifications reported

in Table 2 by focusing on the 3 years before and the 3 years after the placebo date. By

dating the events 4 years earlier than the actual date, we avoid any overlap between the

post-estimation window in the placebo test and the pre-estimation window in our original

empirical setting.

To conduct the test, we interact a dummy (Treated Fake) equal to one for the banks

that have suffered from a cyberattack in our original setting with a dummy (Post Fake)

taking a value of one in the three years after the false cyberattack. In any specification, the

interaction term should not be significant to confirm the causal interpretation of our results.

Consistent with this expectation, the analysis reported in the Online Appendix shows that

the interaction term Treated Fake × Post Fake does not enter any specification with

a significant coefficient. Therefore, the results of the falsification test support a causal

interpretation based on the effects of exogenous cyberattacks on depositors’ behavior.

3.2.3 Do Cyberattacks Reduce the Market Share of Affected Banks?

An alternative way to examine the effects of cyberattacks on the deposit market is to focus on

the impairment of the market position of affected small banks as measured by market share.

To quantify the effects on the market share of treated banks, we first aggregate the deposits

data at the bank-county level and estimate difference-in-differences specifications where the

dependent variable is the deposit market share of a bank j in a county z. We estimate the

model using the sample of matched treated and untreated banks we have employed in our

previous analyses. The estimated equation takes the following functional form:
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(3)
Market Sharei,z,t = α + βTreated× Post + BANK

+ COUNTY×TIME + εi,z,t,

Where the dependent variable is the market share of bank j, in county z at time t (that

is, the deposits of bank j in county c divided by the total bank deposits in the same county),

BANK is a vector of bank fixed effects and TIME is a vector of county times year fixed

effects. We cluster the standard errors at the bank level.

[TABLE 5 HERE]

The results reported in Table 5 show that cyberattacks significantly reduces the market

share of treated banks. The estimates indicate a decrease of approximately 1 percentage point

of the market share of these banks as compared to the untreated group as a consequence

of the cyber incident. This decline is also economically substantial given that the average

county market share of a treated bank prior to cyberattacks is equal to 7.2%.

Overall, cyberattacks on small banks result in a significant slowdown of the growth rates

of deposits leading to a consequent decline in their market share as compared to untreated

banks of similar size.

3.3 Heterogeneity in Depositors’ Response

3.3.1 Does Digital Literacy Matter for Depositors’ Response?

In this section, we investigate if heterogeneity in depositor sophistication matters when

reacting to cyberattacks in deposit markets. Ex-ante, it is not clear if sophisticated or

informed depositors should react more to cyberattacks. On one hand, Chen et al. (2020)

document that negative bank performance is primarily understood and penalized by more
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sophisticated depositors when banks are more transparent. Similarly, Chen et al. (2019)

show that “sophisticated” depositors react more negatively to the disclosure of negative bank

social performance (measured by Community Reinvestment Act (CRA) ratings and by their

downgrade). Thus, following this line of work, we should expect a stronger response from

sophisticated informed depositors as they are better able to understand the consequences of

cyberattacks.

On the other hand, the implications of the results above might not hold for our analysis.

Differently from Chen et al. (2019) and Chen et al. (2020), the disclosure event we examine

does not directly raise concerns over bank (social) performance but instead more directly

affects bank depositors through exposure of their personal information. Put another way,

Chen et al. (2019)examine the release of technical information (the support a bank offers

to the local community through loans to small businesses) while Chen et al. (2020)focuses

on bank earnings. Both of these disclosures might be less directly related to depositors’

welfare and might only be understood by a limited number of sophisticated depositors. This

suggests that cyberattacks might elicit stronger response from unsophisticated depositors as

they are more salient.

Furthermore, from a theoretical point of view, both Duffie and Younger (2019) and

Eisenbach et al. (2020) suggest that the consequence of cyber risk for depositors can be

framed within theories of bank run. As a result, what we observe is not necessarily the

consequence of a response driven by the ability of depositors to adequately understand

elaborate information on issues related to cybersecurity. Instead, the reaction of depositors to

the disclosure of cyberattacks might also driven by uninformed (unsophisticated) depositors.

We try to disentangle the role of depositor awareness about cyber risk on our results by

differentiating depositors on the basis of their degree of “digital literacy” that we measure

using several socioeconomic characteristics of the local deposit market. Specifically, the first

measure is based on estimates of the percentage of broadband subscriptions in a county
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provided by Tolbert and Mossberger (2020). The second is from Form 477 on internet access

connections per thousands of households at the county level provided by the Federal Commu-

nication Commission and available at https://www.fcc.gov/general/broadband-deployment-

data-fcc-form-477. We next identify treated counties with high (low) digital literacy and

estimate the following specification (see Irani and Oesch (2016) for a similar approach):

(4)
Ln(Deposits)i,j,z,t = α + β1(Treated High Digital Literacy× Post)

+ β2(Treated Low Digital Literacy× Post)
+ BRANCH + COUNTY×TIME + εi,j,z,c,t,

where β1 (β2) measures the differential impact of the shock for the group of branches

located in counties with high (low) Digital Literacy, defined as counties with values of our

two proxies below (above) the median in the group of treated counties. As in our baseline

analyses, we estimate equation (4) without and with bank controls.

[TABLE 6 HERE]

The results reported of Table 6 show that the relative decline in deposits in the treated

group is stronger in counties where depositors show (plausibly) a low digital literacy. In

particular, we find that the coefficient of Treated Low Digital Literacy × Post is negative

and significant across all specifications independently of which proxy of digital literacy we

employ. The coefficient of Treated High Digital Literacy × Post is still negative but

its magnitude is always statistically smaller than the coefficient of Treated Low Digital

Literacy × Post.

We provide further support for the conclusion above by repeating the analysis with more

indirect proxies of digital literacy. The first is the median household income in a county taken

from the US Census bureau (with higher values denoting more digital literacy). The second is

the per capita income form dividends, interests and rents with larger values indicating more
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depositor sophistication and consequently higher digital literacy. Using these alternative

measures, we still find a stronger decrease in deposit growth in counties where depositors

should have less digital literacy6.

In general, our results indicate that the consequences of cyberattacks on the deposit

market are not a reflection of the awareness of depositors to issues related to cyber risk. In

contrast, they seem to reflect a broader and widespread reputational effect.

3.3.2 Does the Market Leadership of Competitors Matter?

In a deposit market where banks compete for deposits, the magnitude of the reputational

damage produced by a successful cyberattack might be influenced by the reputation strength

of the competing banks in the same market. To put it differently, in local markets where

competitors have a strong leadership and visibility, thus representing an appealing alternative

for depositors, we should observe a stronger negative effect in terms of deposit growth for

affected banks if we are indeed capturing a reputation effect.

To understand if the conjecture above finds support in our data, we use SOD data to

quantify the proportion of bank branches in the local deposit market owned by the top

3 banks operating in that market and not affected by a cyberattack. We then estimate

equations similar to (4) by distinguishing affected branches operating in local deposit markets

with strong and low market leadership by the competing banks. Essentially, we postulate

that unaffected banks with a large proportion of the branch network in the local market

have a reputational advantage as compared to other banks. This assumption is consistent

with the approach adopted by previous studies to quantify the reputation of banks in the

syndicate lending market (see, for instance, Ross (2010) and Bushman and Wittenberg-

Moerman (2012)).

[TABLE 7 HERE]
6The results are available upon request.
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We report the results of the test in Table 7. In line with our expectation, we find that

the decline in the growth rates of deposits for the affected branches relative to the branches

in the control group is driven by markets where competitors own a larger proportion of the

branch network. In these markets the (relative) decline in the growth rate of the deposits of

the affected banks is well above 30 percentage points.

3.4 Do Cyberattack Affect Funding Costs in the Deposit Market

The negative reputational damages for affected banks after a cyberattack might also generate

consequences in terms of funding costs. For instance, banks with a weaker reputation in

ensuring the cybersecurity of their depositors might be forced to offer a higher remuneration

to maintain (or establish) contractual relationships with creditors. Therefore, in this section

we analyze how deposit rates offered by banks to depositors change after cyberattacks. Our

deposit rates data comes from RateWatch7.

We focus on three types of deposit rates: 1) rates offered on all products (All rates);

2) 12-month Certificate of Deposits with an account size of $10,000 (CD12mth10k), and;

3) Money Market deposit accounts with an account size of $25,000 (MM25k). The initial

focus on all rates allows us to understand if there is any change in total funding costs. The

focus on the other two rates is important to understand the effects on the costs of the two

most representative time and savings deposit products used by bank customers (Drechsler

et al., 2017, 2018)8. This choice allows us to more cleanly observe changes, if any, on rates

offered for a single homogenous product following cyberattacks.

To conduct our analysis, we estimate the following difference-in-differences model:
7RateWatch collects weekly branch level data since 2001 on rates offered for various products (e.g.,

Certificate of Deposits, Money Market Deposits, Savings Accounts, Interest Checking Accounts) of different
nominal amounts and maturities and covers over 50% of bank branches in the U.S.

8Ben-David et al. (2017) notes that only a relatively small fraction of bank deposits is of a longer maturity
than 12-months and therefore, these short-term deposits are more likely to reflect depositor sentiment.

23



(5)
Ratesp,i,j,z,t = α + βTreated× Post + BRANCH

+ COUNTY×TIME + εp,i,j,z,t,

Where p is the product belonging to branch i of bank j in county z, and belonging to a

cohort c at time t (week). Rates is the logarithmic transformation of the rates offered and

described earlier. As before, our key explanatory variable is Treated × Post and measures

the change in deposit rates from the pre to the post shock period (defined as in equation (1))

in the group of treated banks as compared to the control group. However, differently from

our baseline model in (5) we define Post as equals to zero (one) for the 36-months before

(after) the month where the hack took place because we can observe deposit rates at high

frequency intervals9.

[TABLE 8 HERE]

We report the results in Panel A of Table 8. The first three columns show the results

for the rates on all products (ln(All Rates)) while Columns (4)-(6) and (7)-(9) shows rates

on ln(CD10mth10k) and ln(MM25k) respectively. Regardless of the deposit product and

econometric specification, we find that treated branches do not increase rates in the deposit

market as compared to control branches after a cyberattack. One possible explanation

for this finding is that cyberattacks are costly due to expenses on remediating information

technology systems and procedures (Kamiya et al., 2020). Furthermore, these costs could be

disproportionately higher for small banks, thus resulting in limited resources being allocated

to increase the remuneration to creditors to defend their market position.
9In particular, deposit rates are available at weekly intervals. However, we define Post using months

instead of weeks because depositors might not have been made aware immediately and react in deposit
markets. Other specifications are similar to equation 1).
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However, the finding that the overall cost of deposits does not increase after cyberattacks

does not exclude the possibility that treated branches increase their rates in at least some

local deposit markets. Specifically, the previous section suggests that the negative impact

of cyberattack on deposit growth is stronger (weaker) in markets where competitors hold a

stronger (weaker) leadership position (presumably due to their established reputation). The

possibility for the affected branches to retain deposits is therefore not equal across different

local markets. To examine the implications of this result for the rate policy of the hacked

banks, we modify the specification in Panel A by interacting Treated High Competitor’s

Market Position × Post and Treated Low Competitor’s Market Position× Post

defined in the previous section and display the results in Panel B of Table 8.

We find that the coefficient of the interaction Treated High Competitor’s Market

Position × Post (Treated Low Competitor’s Market Position× Post) is negative

(positive) and statistically different at conventional levels. Therefore, in counties where there

is a strong (weak) market leadership position by competing banks, the treated branches

decrease (increase) their rates offered on deposit products. This result indicates that treated

banks increase the offered rates only in markets where they have plausibly more chances to

compete with the unaffected banks; that is, when competing banks do not have a strong

competitive advantage from their market leadership that makes it unlikely for the hacked

banks to retain old (or attract new) customers. Simultaneously, the need to limit the overall

costs paid on deposits seems to induce hacked banks to decrease deposit rates in markets

where it is costlier to retain (or attract) bank customers; namely, in local markets where

customers have the opportunity to switch to banks with an established and strong market

position (Berger and Turk-Ariss, 2015; Jacewitz and Pogach, 2018).

Taken together, our analysis provides insight into how banks manage their funding strat-

egy after losing trust in deposit markets brought upon by cyberattacks.
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3.5 Spillover Effects in the Local Deposit Market

Our baseline analysis does not consider the possibility of spillover effects within a local de-

posit market. The assumption of a lack of spillover effects is rooted in any conventional

difference-in-differences framework that excludes interferences across units by formally re-

quiring that the Stable Unit Treatment Value Assumption (SUTVA) holds10. Nevertheless,

in empirical settings involving companies operating in the same industry (and often in the

same market), this assumption is less likely to be valid and the related estimation of the

average treatment effect can be significantly biased (Boehmer et al., 2020; Clarke, 2017).

For instance, Kamiya et al. (2020) show negative spillovers at the industry level after cyber-

attacks for non-financial firms and Eisenbach et al. (2020) point out that a cyberattack to

one financial institution can generate negative spillovers on other institutions via a network

effect (for instance, through the payment system). Therefore, given that banks compete in

narrow geographic markets through branch networks, there could be concerns of spillover

effects.

However, when cyberattacks involve small banks, it might well be possible that the events

maintain an idiosyncratic nature. It follows, that under an “equilibrium framework” for the

deposit market, at least part of the funding that are not deposited in the affected banks

because of the cyberattack will remain still within the local deposit market (e.g., Chen et al.

(2017)). As such, ex-ante, it is unclear if cyberattacks to small banks produces spillovers, and

if so, its direction. In the next two sections, we model and test for two different typologies

of spillovers: a) towards similar small banks; b) towards dominant or the largest banks in

the local market.
10This assumption postulates that there are no indirect effects arising from treatment related to externali-

ties. These externalities can influence the control group after the implementation of the treatment (Boehmer
et al., 2020). The presence of potential geographic-related externalities is only one of the possible causes of
indirect effects associated a treatment.
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3.5.1 Spillover Effects Towards Small Banks

Spillovers towards small banks can occur for two reasons. First, negative spillovers might

materialize if similar small banks are perceived equally at risk in terms of cybersecurity.

Second, positive spillovers might emerge when depositors that conventionally opt for small

banks still prefer to establish contractual relationships with banks of similar size. In both

cases, these effects might affect our controls group, thus creating a potential bias in our

estimates. In this section, we test for the presence of these spillover effects within our control

group. To this end, we compare the dynamics of deposits in the branches of untreated banks

in our control group in the counties where the hacked banks operate and with the dynamics

of branches of banks with similar size operating in adjacent counties (where there are no

hacked banks). We then estimate a difference-in-differences model where the original control

group is considered (indirectly) “treated”. As in our initial tests, we estimate the model with

and without controls.

[TABLE 9 HERE]

We report the results in Panel A of Table 9. In all specifications, we do not find any

evidence that the growth rate of the deposits of the branches of (indirectly) “treated” banks is

significantly different from the growth rate of branches of similar banks in adjacent counties.

In additional tests, we achieve a similar conclusion if we consider as (indirectly) “treated”

banks, those institutions with assets up to $10bln and operating in counties where branches

of hacked banks are located.

Two key conclusions emerge from the set of tests discussed above. First, it is unlikely

that our initial estimates of the average treatment effects are biased due to the presence of

small bank spillovers within the estimation sample. Second, and more generally, there is no

evidence of any beneficial or damaging effects for similar banks from the cyberattack.
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3.5.2 Spillover Effects towards Dominant and Large Banks

We next extend our analysis to account for the presence of potential spillovers in favor of

dominant or large banks in the local market. Dick (2007)documents that service quality is

higher in larger markets and especially for banks that dominate these markets. It might

therefore be suggested that depositors would reallocate their deposit decisions towards these

banks. To examine this, we exploit the dynamics of deposits in the branches of untreated

large (or dominant) banks in the counties where affected small banks operate and in adjacent

counties (where there are no affected small banks).

Specifically, in each of the affected county, we identify banks that have a dominant

market position (market share larger than 20%) or that are large. We use three definitions

of large bank: a) a bank with total assets above $10bln; b) a bank with total assets above

$50bln and; c) a bank with total assets above $100bln. We then compare the dynamics of the

deposits of these banks with those of banks with a similar market position or size in adjacent

counties unaffected by the cyberattacks around the events in our sample. We compare banks

in adjacent counties as these banks are likely to be operating in similar observable and

unobservable conditions that might influence the evolution of deposits (Huang, 2008). In

essence, we estimate a difference-in-differences where we define as “treated” dominant (large)

banks in the affected counties and as untreated the dominant (large) banks in the unaffected

adjacent counties.

We report the results of these tests in Panels B, C, D and E of Table 9. More precisely, in

Panel B we present the results for the sample of dominant banks while in remaining Panels

we focus on banks with total assets above $10bln (Panel C), $50bln (Panel D) and $100bln

(Panel E).

The analysis consistently indicates an increase in the deposits for dominant and large

banks operating in the counties affected by cyberattacks as compared to banks located in

unaffected adjacent counties. The differential increase in deposit growth ranges between 7
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and 8 percentage points. Taken together, we find strong evidence of positive spillovers effects

towards dominant or large banks. This is consistent with the view that these banks might

benefit from reputational advantages and are therefore able to capture the deposits that are

lost from affected small banks.

3.6 Do Cyberattacks Affect a Bank’s Reputation in the Local Lend-

ing Market?

Besides deposit markets, banks engage in contractual relationships with households in the

lending market. While cyberattacks do not pose immediate threats to potential borrowers,

they might still undermine a bank’s reputation in the lending market and its competitive

position (Akey et al., 2018; Kamiya et al., 2020). We examine the consequences of the

cyberattacks in the lending market in two steps.

First, we take the perspective of the applicants to test whether potential borrowers shy

away from banks that have suffered cyberattacks and whether the characteristics of these

borrowers change. In particular, if cyberattacks lead to reputational damages in the lending

market, less risky applicants that have more alternatives in mortgage markets might opt for

lenders with a stronger reputation. We would then observe a decrease in the quality of the

applicants to the affected banks.

Second, we analyze a bank’s response to borrower behavior in terms of underwriting

standards. To maintain their market position, these banks might be forced to approve

riskier loans with a consequent deterioration of their lending standards.

To conduct our analysis, we use loan data from the Home Mortgage Disclosure Act

(HMDA) database collected by the Federal Financial Institutions Examination Council

(FFIEC)11. Each loan application in HMDA dataset contains information on borrower demo-
11HMDA is a loan-level dataset that covers all mortgage applications that have been reviewed by qualified

financial institutions, both private and public. HMDA requires an institution to disclose any mortgage
lending if it has at least one branch in any metropolitan statistical area and meets the minimum size
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graphics (e.g., gender and race), loan characteristics (e.g., loan amount applied for, applicant

income and type), the decision undertaken by the institution (e.g., approved or denied), the

geographical location of the property (e.g., county), the year in which the loan application

decision is made, and the lender’s identifier.

It is worth noting that the HMDA data does not enable us to track the loans submitted to

individual branches. Furthermore, because our primary interest is to observe the implications

for the hacked banks and to reduce the effects of potential cofounding factors, we conduct

the analysis at the bank-county-year level.

To construct our sample, we drop loan applications where the lender does not have a

branch in the county of the mortgage’s location. These observations are likely to be loans

that were submitted to independent mortgage brokers (Cortés, 2015). Given that our initial

tests focus on the response of potential borrowers of a bank that are geographically proximate

to where the data breach occurred, retaining these observations is likely to introduce noise

into the analysis. We then aggregate HMDA loan-level variables to the bank-county-year

and estimate the following difference-in-differences model:

(6)
Lendingi,z,t = α + βTreated× Post + BANK

+ COUNTY×TIME + εi,z,t,

Where Lending is one of the following variables includes 1) Number of Loans (the

logarithmic transformation of the total number of loans submitted in a bank-county-year);

2) Submitted Loan-to-Income Ratio (the average loan amount requested for divided by

the average income of the applicant in a bank county-year); 3) Approval Rate (number of

approved loans/total loans submitted at the bank-county-year level); 4) Approved Loan-

to-Income Ratio (the bank-county-year average of loan amount requested in approved

threshold. For instance, in 2010, this reporting threshold is $39 million in book assets. The annual reporting
criteria can be accessed at: https://www.ffiec.gov/hmda/reporterhistory.htm. Due to the low reporting
requirements, the HMDA dataset covers the majority of lenders and accounts for nearly 90% of the U.S.
mortgage market (Cortés et al., 2016).
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loans/applicant income)12. The first two variables, therefore, take the borrowers’ perspective

while the remaining variables take the bank’s perspective. We use Loan-to-Income ratios as a

proxy for the riskiness of a borrower as higher values of these ratios indicate a lower capacity

of borrowers to repay these loans, and as a result, lead to higher defaults on these loans

(Dell’Ariccia et al., 2012; Campbell and Cocco, 2015).

Our key explanatory variable is Treated × Post and measures the change in one of

the lending variables from the pre to the post shock period, defined as in equation 1), in

the group of treated banks as compared to the control group. For all lending outcomes and

specifications, we include a range of borrower and loan control variables.

[TABLE 10 HERE]

We report the results in Table 10. In the first two columns, we do not find evidence of

an overall decline in the number of mortgage applications in the sample of the hacked banks

as compared to the control group. However, the next two columns show a relative increase

in the Loan-to-Income ratio of submitted loans in the group of hacked banks. The last four

columns, taking the lender perspective, suggest that the approval rate of the affected banks

does not change but there is an increase in the loan to income ratio of the approved loans.

Taken together, these results indicate that treated banks are more likely to attract riskier

borrowers after the exogenous cyber incident and are forced to relax their lending standards

to maintain unchanged their approval rate.

Ultimately, the results are, at least partially, consistent with the reputational damages

from data breaches in banking firms spilling over the mortgage market.
12We winsorize Applicant Income and Loan Amount at the 5% tails to minimize reporting errors.
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4 Conclusion

Cybersecurity is a rising concern for regulators and bankers. However, while large banks have

a wide range of human and financial resources to strengthen their defense against cyberat-

tacks, small banks recognize cyber risks as the major threat to their business (Conference

of State Bank Supervisors, 2019). In this paper, we document the validity of this view by

identifying the negative business consequences for small banks after cyberattacks resulting

in data breaches.

We show that the branches of small banks affected by exogenous cyber incidents expe-

rience a significant slowdown in the growth rate of their deposits as compared to branches

of banks of similar size. This decline leads to a significant decrease in the deposit market

share of the hacked banks. The negative effects of cyberattacks in local deposit markets

are not driven by the awareness of depositors of the negative implications of cyber risk but

seem to reflect a broader negative reputational effect. Along these lines, we show that the

slowdown in deposit growth for hacked banks is stronger in local deposit markets wherein

some competitors have a larger reputational advantage. Furthermore, while we do not find

evidence of an aggregate increase in funding costs for the hacked banks after the cyberattack,

we document these costs increase only in those local markets where these banks are more

likely to defend their competitive position.

We next show that the cyberattacks generate positive spillovers on the branches of domi-

nant and large banks in the local deposit market. Essentially, depositors opt for those banks

that are normally associated with a better service quality in the deposit market (Dick, 2007).

Finally, we also find that the business damages for the banks targeted by a cyberattack

extend also to the mortgage market. These banks attract riskier applicants after the cy-

berattack as compared to similar but untreated banks and are forced to relax their lending

standards to maintain unchanged their approval rate.

Overall, our findings document that cyberattacks undermine the trust of bank customers
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on the affected banks and generate significant bank-specific reputational damages that lead

to a reduced competitive position in the deposit market and to negative effects also for the

contractual relationships of small banks with borrowers.

Therefore, the effects above implies that the presence of financial constraints on small

banks in terms of cybersecurity investments has the potential to undermine the pivotal

role of these banks for the development of local economies. In this respect, our analysis

emphasizes the importance of sector cybersecurity initiatives which can complement the

small bank-specific investments in cybersecurity strategies. Yet, equally important appears

the implementation of cost recovery options that to reduce the negative reputational effects

arising from data breaches.
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Figure 1
Evolution of deposits over time

This figure plots the trend in Ln (Deposits) for branches of treated and untreated banks in the 3-year period before and after
the cyberattack. We estimate the trends for a linear model that accounts for branch and county fixed effects and bank controls.
This Figure does not show clear differences in the trends followed by the two group of branches in the 3-year period preceding
the cyberattack. The two trend lines seem instead to follow very different trends in the post-period where we observe a clear
decline in the growht rate for the branches of treated banks compared to the branches of untreated banks.
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Table 1
Sample

The table below provides a description of the 16 cyberattacks considered in the analysis. We provide an overview of the report
date, the bank identifier, the asset size in the year of the hack as well as geographic details including the state and the number
of affected counties pertaining to the attack. In brackets is the number of all counties the bank operates in. The information
on cyberattacks is provided by Privacy Rights Clearinghouse (PRC) the bank information is from the Summary of Deposits
(SOD).
ID Report Date RSSDID Assets (t-1) Affected State Affected Counties
1 May 19, 2006 682563 9595562 Texas 17
2 May 25, 2006 853372 313698 North Carolina 3
3 November 20, 2006 181758 52180 Louisiana 2
4 May 21, 2007 174572 3683951 New Jersey 10
5 October 10, 2007 500050 1293771 Kansas 4
6 January 24, 2008 975984 1021318 Texas 3
7 June 10, 2008 991340* 3509342 Indiana 8 (10)
8 August 28, 2008 816603* 2395586 Rhode Island 3 (4)
9 September 10, 2008 621076 321851 Ohio 1
10 January 12, 2010 799612 1569436 New York 1
11 November 16, 2010 616193* 124537 New Hampshire 1 (2)
12 January 31, 2013 997847 278904 Wisconsin 1
13 July 17, 2014 790534 2471993 Florida 1
14 January 4, 2016 618807* 3517028 Massachusetts 5 (4)
15 January 12, 2016 119779 745395 Massachusetts 1
16 January 12, 2016 128904* 8803622 Massachusetts 7 (11)
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Table 2
Descriptive Statistics and Parallel Trends

The table below reports descriptive statistics and tests for parallel trends. Panel A provides descriptive statistics of the main
variables used in the analysis. We use the natural logarithm of deposits (Ln(Deposits)) to estimate changes in deposits as a
result of cyberattack. To control for bank-specific characteristics, we include a vector of control variables including the loga-
rithmic transformation of bank total assets measured in thousands of US$ (Size), the ratio between net income and total assets
(ROA), the fraction of non-performing loans to reflect credit risk (NPL), the tier 1 capital ratio (Tier 1), total loans divided
by total assets (Loan) and a proxy for bank productivity defined by the ratio between total assets and the number of employees
(Productivity). In Panel B, we compare the branches, and the related commercial banks, in the treated and control groups
are sufficiently similar in their characteristics before the cyberattack. Columns (2) and (3) of Panel B of Table 2 show the
average values of our dependent variable and bank controls for the treated group and the control group in the year before the
event. Column (4) reports instead the normalized difference in bank characteristics between the two groups. In Panel C, we
investigate pre-shock trend dynamics of our dependent variables across the two groups. We report the average one-year change
in the dependent variable across the two groups in the 3 years preceding the cyberattack. In Panel D, we test for the presence
of pre-shock differentials in our dependent variable using a regression model. Standard errors given in parentheses are corrected
for heteroskedasticity and bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A: Descriptive Statistics
Mean Median SD Minimum Maximum

Ln(Deposits) 15,460 10.080 10.601 2.316 0.000 13.472
Hack 15,460 0.199 0.000 0.399 0.000 1.000
Post 15,460 0.453 0.000 0.498 0.000 1.000
Size 15,334 14.821 14.905 0.969 11.379 16.398
ROA 14,730 0.010 0.009 0.008 -0.019 0.038
NPL 14,730 0.012 0.007 0.018 0.000 0.111
Tier 1 14,730 0.134 0.117 0.052 0.083 0.390
Loan 15,082 0.651 0.670 0.144 0.244 0.911
Productivity 15,080 5.348 4.783 2.930 0.673 16.325

Panel B: Pre-Shock Characteristics
Normalized

N Treated (A) Untreated (B) Diff. (A-B) Ttest (A-B)

Ln(Deposits) 2,328 10.095 10.038 -0.024 0.6436
Size 243 13.986 13.727 -0.129 0.4627
ROA 243 0.002 0.002 0.003 0.7818
NPL 243 0.014 0.016 0.109 0.6119
Tier 1 243 0.139 0.156 0.195 0.3867
Loan 242 0.661 0.674 0.069 0.7274
Productivity 231 4.823 5.641 0.248 0.2655

Panel C: Parallel Trends
Treated (A) Untreated (B) Diff. (A-B) T-value

∆ Ln(Deposits)t−3 0.085 0.092 -0.007 0.826
∆ Ln(Deposits)t−2 0.080 0.121 -0.041 0.190
∆ Ln(Deposits)t−1 0.143 0.143 0.000 0.999

Panel D: Pre-Shock Trend Differentials
Ln(Deposits)

(1) (2) (3)
Treated × Dummy (t-3) 0.117 0.109 0.010

(0.085) (0.084) (0.063)
Treated × Dummy (t-2) 0.115 0.107 0.100

(0.079) (0.076) (0.072)
Treated × Dummy (t-1) 0.072 0.069 0.055

(0.075) (0.072) (0.065)
Treated × Dummy (t+1) -0.153∗∗∗ -0.152∗∗∗ -0.149∗∗∗

(0.049) (0.049) (0.052)
Treated × Dummy (t+2) -0.151∗∗∗ -0.148∗∗∗ -0.141∗∗

(0.055) (0.055) (0.057)
Treated × Dummy (t+3) -0.238∗∗∗ -0.232∗∗∗ -0.233∗∗∗

(0.058) (0.058) (0.057)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 15460 15334 14382
R2 0.950 0.950 0.95136



Table 3
Baseline Model

The table below reports difference-in-differences regression results where Ln(Deposits) is the logarithmic transformation of the
branch-level deposits in US dollar. In Panel A we report a univariate difference-in-differences test. In Panel B we report our
baseline regression. Treated is a dummy that equals one if a branch belongs to a bank that has suffered from an exogenous
cyberattack in the sample period and zero otherwise; Post is a dummy equal to one in the post-shock window (up to 3
years post the shock). The difference-in-differences estimate of the coefficient of Treated × Post is the difference between
how the dependent variable changes in the branches of treated banks (namely, banks affected by the cyberattack) and in
the branches of the untreated banks after the shock. To mitigate concerns over omitted variables, we also report the results
including a vector of bank controls. Depending on the specification, this vector consists of the logarithmic transformation of
bank total assets measured in thousands of US$ (Size), the ratio between net income and total assets (ROA), the fraction of
non-performing loans to reflect credit risk (NPL), the tier 1 capital ratio (Tier 1), total loans divided by total assets (Loan)
and a proxy for bank productivity defined by the ratio between total assets and the number of employees (Productivity).
Standard errors given in parentheses are corrected for heteroskedasticity and bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5% and 10% levels.

Panel A: Univariate
Ln(Deposits)

Treated Untreated Diff-in-diff
(1) (2) (3)

Average Diff. Pre-Post 0.163∗∗ 0.371∗∗∗ -0.209∗∗∗
T-value (3.734) (18.140) (4.490)

Panel B: Multivariate
Ln(Deposits)

(1) (2) (3)
Treated × Post -0.250∗∗∗ -0.241∗∗∗ -0.216∗∗∗

(0.086) (0.084) (0.077)
Size 0.062 0.080

(0.066) (0.085)
ROA 3.547

(3.547)
NPL 1.218

(1.200)
Tier 1 -0.026

(0.597)
Loan -0.132

(0.229)
Productivity 0.001

(0.017)
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 15460 15334 14382
R2 0.950 0.950 0.951
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Table 5
Market Share

The table below reports results with respect to a bank’s market share in the local deposit market. Therefore, we aggregate the
deposits data at the bank-county level and estimate difference-in-differences specifications where the dependent variable is the
deposit market share of a bank in a given county. Market share is constructed based on the market shares of banks obtained
by scaling the dollar value of the deposits held by each bank in a county for the total amount of deposits in the same county.
We estimate the model using the sample of matched treated and untreated banks we have employed in our previous analyses.
The variable of interest is Treated × Post. Standard errors given in parentheses are corrected for heteroskedasticity and
bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Market Share)

(1) (2) (3)
Treated × Post -0.014∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.002) (0.002) (0.002)
Size 0.011∗ 0.012

(0.006) (0.008)
ROA 0.119

(0.135)
NPL 0.104∗

(0.054)
Tier 1 -0.007

(0.044)
Loan 0.037∗

(0.021)
Productivity 0.002∗∗

(0.001)
Observations 2710 2679 2502
R2 0.937 0.947 0.952

39



Ta
bl
e
6

C
ha

nn
el
:
D
ig
it
al

Li
te
ra
cy

T
he

ta
bl
e
be

lo
w

re
po

rt
s
re
su
lt
s
co
nc
er
ni
ng

th
e
he
te
ro
ge
ne
it
y
in

de
po

si
to
r
re
sp
on

se
s
to

cy
be

r
at
ta
ck
s.

W
e
re
-e
st
im

at
e
ou

r
ba

se
lin

e
re
gr
es
si
on

an
d
ac
co
un

t
fo
r
di
ffe

re
nt

di
m
en
si
on

s
of

de
po

si
to
r
di
gi
ta
ll
it
er
ac
y.

In
P
an

el
A
,w

e
em

pl
oy

co
un

ty
m
ea
su
re
s
re
la
te
d
to

th
e
de
ve
lo
pm

en
t
of

th
e
in
fr
as
tr
uc
tu
re

av
ai
la
bl
e
in

a
co
un

ty
.
T
he

fir
st

in
di
ca
to
r

is
ba

se
d
on

th
e
pe

rc
en
ta
ge

of
br
oa
db

an
d
su
bs
cr
ip
ti
on

s
in

a
co
un

ty
pr
ov
id
ed

by
T
ol
be

rt
an

d
M
os
sb
er
ge
r
(2
02
0)

an
d
th
e
re
su
lt
s
ar
e
re
po

rt
ed

in
co
lu
m
n
(1
)
to

(3
).

T
he

se
co
nd

fo
rm

is
ba

se
d
on

Fo
rm

47
7
on

in
te
rn
et

ac
ce
ss

co
nn

ec
ti
on

s
pe

r
th
ou

sa
nd

s
of

ho
us
eh
ol
ds

at
th
e
co
un

ty
le
ve
l
an

d
th
e
re
su
lt
s
ar
e
re
po

rt
ed

in
co
lu
m
n
(4
)
to

(6
).

T
re

at
ed

H
ig

h
D

ig
it

al
L
it

er
ac

y
×

P
os

t
an

d
T
re

at
ed

L
ow

D
ig

it
al

L
it

er
ac

y
×

P
os

t
m
ea
su
re

th
e
di
ffe

re
nt
ia
li
m
pa

ct
of

th
e
sh
oc
k
fo
r
th
e
gr
ou

p
of

br
an

ch
es

lo
ca
te
d
in

co
un

ti
es

w
it
h
hi
gh

(l
ow

)
ho

us
eh
ol
d
so
ph

is
ti
ca
ti
on

,d
efi
ne
d
as

co
un

ti
es

w
it
h
va
lu
es

of
ou

r
tw

o
pr
ox
ie
s
be

lo
w

(a
bo

ve
)
th
e
m
ed
ia
n
in

th
e
gr
ou

p
of

tr
ea
te
d
co
un

ti
es
.
St
an

da
rd

er
ro
rs

gi
ve
n
in

pa
re
nt
he
se
s
ar
e
co
rr
ec
te
d
fo
r
he
te
ro
sk
ed
as
ti
ci
ty

an
d
ba

nk
-l
ev
el

cl
us
te
ri
ng

.
∗∗

∗
,
∗∗
,
an

d
∗
in
di
ca
te

st
at
is
ti
ca
l
si
gn

ifi
ca
nc
e
at

th
e
1%

,
5%

an
d
10
%

le
ve
ls
.

D
ig
it
al

L
it
er
ac
y

L
n(
D
ep

os
it
s)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

T
re
at
ed

H
ig
h
D
ig
it
al

L
it
er
ac
y
×

P
os
t

-0
.1
41

∗∗
-0
.1
36

∗∗
-0
.1
26

∗
-0
.1
25

∗∗
-0
.1
19

∗∗
-0
.1
04

∗∗

(0
.0
67
)

(0
.0
67
)

(0
.0
69
)

(0
.0
55
)

(0
.0
55
)

(0
.0
51
)

T
re
at
ed

L
ow

D
ig
it
al

L
it
er
ac
y
×

P
os
t

-0
.4
34

∗∗
∗

-0
.4
27

∗∗
∗

-0
.3
84

∗∗
∗

-0
.4
24

∗∗
∗

-0
.4
16

∗∗
∗

-0
.3
84

∗∗
∗

(0
.0
98
)

(0
.0
96
)

(0
.0
89
)

(0
.0
93
)

(0
.0
92
)

(0
.0
88
)

Si
ze

C
on

tr
ol

N
o

Y
es

Y
es

N
o

Y
es

Y
es

B
an

k
C
on

tr
ol
s

N
o

N
o

Y
es

N
o

N
o

Y
es

B
ra
nc
h
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
ou

nt
y
x
Y
ea
r
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
oe
ffi
ci
en
t

0.
29
2∗

∗∗
0.
29
2∗

∗∗
0.
25
8∗

∗
0.
29
9∗

∗∗
0.
29
7∗

∗∗
0.
28
0∗

∗∗

O
bs
er
va
ti
on

s
15
46
0

15
33
4

14
38
2

15
46
0

15
33
4

14
38
2

R
2

0.
95
0

0.
95
0

0.
95
1

0.
95
0

0.
95
0

0.
95
1

40



Table 7
Channel: Competitor’s Market Position

The table below reports results concerning the heterogeneity in depositor responses to cyber attacks. We re-estimate our base-
line regression and account for the largest three untreated banks in the local deposit market measured based on the market share
of their branch network. We employ a measure based on the number of branches owned by a bank in a county scaled by the
total number of bank branches in the same county (Benfratello et al., 2008). Standard errors given in parentheses are corrected
for heteroskedasticity and bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Competitor’s Market Position
Ln(Deposits)

(1) (2) (3)
Treated High Competitor’s Market Position × Post -0.392∗∗∗ -0.381∗∗∗ -0.342∗∗∗

(0.118) (0.117) (0.110)
Treated Low Competitor’s Market Position × Post -0.083 -0.078 -0.065

(0.077) (0.074) (0.073)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Coefficient -0.309∗∗∗ -0.303∗∗∗ -0.277∗∗
Observations 15460 15334 14382
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Table 9
Spillover Tests

The table below reports spillover tests. Panel A reports results of a spillover test to small banks. The spillover tests are
constructed based on the size breakpoints we use in our main analysis. Small banks are defined as those untreated banks below
1bln and below 10bln respectively. Panel B reports results spillover tests to dominant banks. Dominant banks are defined
as those that have a market share greater than 20% in the deposit market. Panel C, Panel D and Panel E report spillover
tests to large banks defined as banks that have assets greater than 10bln, 50bln and 100bln respectively. Treated defined as
all untreated banks in treated counties based on different size classifications. The tests are structured to compare untreated
branches in treated counties with untreated branches in counties that are adjacent to the treated counties. All regression
include the appropriate controls consistent with our previous models. Standard errors given in parentheses are corrected for
heteroskedasticity and bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A: Small Bank Spillover
Ln(Deposits)

(1) (2) (3)
Treated × Post 0.023 0.029 -0.003

(0.085) (0.085) (0.081)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 20826 20632 19236
R2 0.947 0.949 0.953

Panel B: Dominant Bank Spillover
Ln(Deposits)

(1) (2) (3)
Treated × Post 0.073∗∗ 0.073∗∗ 0.072∗∗

(0.034) (0.034) (0.035)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 20459 20459 19691
R2 0.926 0.926 0.927

Panel C: Large Bank Spillover (>10bln)
Ln(Deposits)

(1) (2) (3)
Treated × Post 0.072∗∗ 0.071∗∗ 0.083∗∗

(0.030) (0.030) (0.038)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 40382 40333 37203
R2 0.900 0.900 0.906

Panel D: Large Bank Spillover (>50bln)
Ln(Deposits)

(1) (2) (3)
Treated × Post 0.066∗∗ 0.067∗∗ 0.084∗∗

(0.031) (0.031) (0.038)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 31378 31378 29788
R2 0.899 0.900 0.904

Panel E: Large Bank Spillover (>100bln)
Ln(Deposits)

(1) (2) (3)
Treated × Post 0.076∗∗ 0.081∗∗ 0.101∗∗

(0.034) (0.035) (0.041)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 26023 26023 24573
R2 0.902 0.903 0.908
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Online Appendix

Table A1
Robustness: Tighter Size Matching

The table below reports results on a tighter size matching of our control group of untreated banks. For the purpose of this
test, the 2 size groups: 1) banks with assets up to $1bln and; 2) banks with assets from $1bln to $10bln are divided into
quartiles. Following, we re-match our group of treated banks to control banks using this tighter size category and re-estimate
our baseline regression. Standard errors given in parentheses are corrected for heteroskedasticity and bank-level clustering.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Tighter Size Matching
Ln(Deposits)

(1) (2) (3)
Treated × Post -0.327∗∗∗ -0.302∗∗∗ -0.274∗∗∗

(0.097) (0.090) (0.087)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 4152 4149 3989
R2 0.965 0.965 0.965
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Table A2
Robustness: Alternative Fixed Effects and Falsification Test

The table below reports additional robustness tests for our main analysis. In Panel A, we specifically account for the fact that
a number of events fall into the same cohort. In this alternative specification we include branch × cohort fixed effects. Panel
B reports a falsification tests. We falsely assume that the cyberattacks happened 4 years before their actual date and then
re-estimate the different model specifications reported in Table 2 by focusing on the 3 years before and the 3 years after the
new date. By dating the events 4 years earlier than the actual date, we avoid any overlap between the post-estimation window
in the placebo test and the pre-estimation window in our original empirical setting. To conduct the test, we interact a dummy
(Treated Fake) equal to one for the banks that have suffered from a cyberattack in our original setting with a dummy (Post
Fake) taking a value of one in the three years after the false cyberattack. Standard errors given in parentheses are corrected
for heteroskedasticity and bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A: Cohort Fixed-Effects
Ln(Deposits)

(1) (2) (3)
Treated × Post -0.248∗∗∗ -0.237∗∗∗ -0.211∗∗∗

(0.086) (0.083) (0.076)
Size Control No Yes Yes
Bank Controls No No Yes
Branch x Cohort FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 15460 15334 14382
R2 0.950 0.950 0.951

Panel B: Falsification
Ln(Deposits)

(1) (2) (3)
Treated Fake × Post Fake -0.445 -0.254 -0.047

(0.327) (0.199) (0.045)
Size Control No Yes Yes
Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 13903 11064 7887
R2 0.924 0.939 0.966
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